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ABSTRACT
A metrological extension of morphological granulometry for
the hyperspectral domain is introduced in this work. This de-
velopment is enabled by the latest study of a suitable ordering
relation for hyperspectral images. With granulometry as a
texture descriptor, a suitable similarity measure for it is also
introduced. In addition to providing validation experiments to
the extension, a preliminary result in a texture discrimination
task can also be found in this work.

Index Terms— Texture, mathematical morphology, pat-
tern spectrum, hyperspectral

1. INTRODUCTION

Mathematical morphology (MM) offers a framework of the-
ory and tools for the analysis of spatial structures in an image.
It has been widely known mostly for its elementary operators,
e.g., erosion-dilation and opening-closing pairs, or segmenta-
tion tools, e.g., watershed and skeletonization. While they are
useful and can be found at the core of many image process-
ing and analysis solutions [1, 2, 3], MM also provides a set of
tools capable of dealing with textures such as granulometry
or, its derivative form, pattern spectrum [4].

Granulometry provides information on the distributions of
object size and distance in an image. The important advantage
of granulometry is that it requires no segmentation step, mak-
ing the processing an efficient one. Finally, pattern spectrum
can be used as a descriptor for texture images.

This article is organized as follows. The extension of mor-
phological granulometry to the hyperspectral domain is intro-
duced in Sec. 2. In Sec. 3, a validation experiment is pro-
vided, showing also how a pattern spectrum is interpreted.
Then, in Sec. 4, a demonstration of its use in a texture dis-
crimination task is given. A suitable texture similarity mea-
sure for pattern spectrum is also introduced. Finally, the work
is concluded in Sec. 5. Table 1 is provided for easy access to
frequently used mathematical notations.
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2. MORPHOLOGICAL GRANULOMETRY

In material science, granulometry is the measurement of the
distribution of size in a collection of grains. In mining, the
measurement can be carried out by the sieving of grains or
particles with increasing mesh size. At each increment, the
mass of grains retained in the sieve will be then recorded.

2.1. Definition

The physical process of sieving grains with increasing mesh
size is analogous to successively applying morphological
opening (or, its dual, closing) operations with increasing
structuring element size [4]. After each opening, the volume
of the resulting image is computed as follows:

ν(γBi(I)) =

∫
γBi(I), i ∈ [1, r] (1)

A granulometric curve can therefore be obtained as a function
of structuring element size. Pattern spectrum (PS) is a deriva-
tive of the granulometric curve where, instead of recording
volume evolution, it is the loss of volume at each succession
that is calculated:

ν(γBi
(I))− ν(γBi−1

(I)), i ∈ [1, r] (2)

Compared to the granulometric curve, PS can be regarded as
more intuitive since the location of its peak directly refers to
the dominant or prevalent size occurring in the image.

2.2. Theoretical requirements

Since granulometry is obtained through a series of opening,
the theoretical properties of an opening is also obtained, i.e.,
anti-extensivity, increasingness, and idempotence. Addition-
ally, granulometry also posseses a property that is stronger
than idempotence, i.e., absorption [4]. Idempotence ex-
presses that multiple openings applied to an image will not
modify the image further, given that the structuring element
size remains the same:

γB(I) = γB(γB(I)).



Table 1: Frequently used mathematical notations.

S A spectrum as a function of wavelength
λ Wavelength, λ ∈ [λmin, λmax]
I, In Grayscale and n-dimensional image functions,

respectively
�,� Logical ordering relation ”less than or equal

to” and ”greater than or equal to”, respectively
d(S1, S2) Distance between S1 and S2

S−∞,
S+∞

Spectral references associated to minimum
and maximum rank extraction, respectively

γ, φ Opening and closing operations, respectively
Bi Structuring element of arbitrary size i
ν Image volume

With the absorption property, applying a series of opening
with increasing structuring element size is equal to applying
only the opening with the largest size:

γBi(γBj (I)) = γBj (γBi(I)) = γmax(Bi,Bj)(I).

As a note, the absorption property is not automatically ob-
tained. It is also dependent upon the choice of the structuring
element shape, i.e., only satisfiable through periodic lines and
disks [4]. However, there are more issues to address due to the
digital approximation of disks [5, 6]. In this work, we decide
to work only with square and diamond structuring elements to
avoid bias that is caused by the digital reconstruction of disks.

2.3. Extension to the hyperspectral domain

The initial formulation of granulometry is developed for bi-
nary and gray level images, where the distinction between
object and background is straightforward. Its extension to the
hyperspectral domain requires a suitable ordering function.

2.3.1. Ordering relation

The first and most fundamental challenge in the extension of
MM to any multivariate domain is the ordering relation. This
is because, at the center of its processing, MM requires deter-
mining the minimum and maximum values of a set of pixel
values contained by the structuring element. In this work, we
will use the conditional ratio and angular (CRA) ordering re-
lation, which has been shown to be the most suitable for hy-
perspectral image processing in a previous study, respecting,
in addition, the expected metrological properties [7].

CRA, as given in (3), is an ordering relation developed
based on the ratio of distances relative to two spectral refer-
ences S−∞ and S+∞. The first and second conditions are
ratios of distances proportional to magnitude and shape dif-
ferences between two spectra, respectively. Distance function
d used throughout this work is the Kullback-Leibler pseudo-
divergence (KLPD) function [8], whose performance has
been evaluated and compared in Ref. [9].

S1 � S2 ⇔
{

R0(S1) > R0(S2) or
R0(S1) = R0(S2) and R2(S1) < R2(S2)

S1 � S2 ⇔
{

R1(S1) > R1(S2) or
R1(S1) = R1(S2) and R2(S1) > R2(S2)

where R0 =
d(Si, S

+∞)

d(Si, S−∞)
, R1 =

d(Si, S
−∞)

d(Si, S+∞)
, and

R2 =
2 · d(Si, S

−∞)

d(S−∞, S+∞)
.

(3)

2.3.2. Image volume

The next challenge to tackle lies in adapting (1) to the hyper-
spectral domain. For a grayscale image, the use of a single
integral is sufficient and appropriate since the image can be
regarded as topology. The volume is essentially the gray area
bounded by the image plane I and the spatial support of the
image (or, the plane at zero value), see Fig. 1a.

(a) (b)

Fig. 1: Illustration of the computation image volume in the
(a) grayscale domain and (b) spectral difference space.

In the hyperspectral domain, the pixel values are n-
dimensional. Thus, the image function is not describable
as a plane but rather in an (n+1)-dimensional space, with n
equals the numbers of spectral bands. To reduce the problem
into a two-dimensional space, in this work, the image volume
is considered in a spectral difference space:

ν(γBi
(In)) =

∫ ∫
d(γBi

(In), S−∞)dx dy, (4)

where i ∈ [1, r], and x and y are the axes of the spatial sup-
port. Essentially, given a reference spectrum S−∞ with the
same spectral dimension as the opening result γBi

(In), we
can obtain a spectral difference plane relative to S−∞. In this
way, we are also defining the plane at zero distance values,
i.e., where S−∞ is located. See illustration in Fig. 1b.

3. VALIDATION EXPERIMENT

Based on the knowledge that a PS provides information of
the distribution of shape and size in an image, a set of hyper-
spectral images as shown in Fig. 2 are generated. Each image
consists of a background and 16 square objects as foreground.
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