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 Abstract— This work presents a method for hyperspectral 
image unmixing based on non-negative tensor factorization.  
While traditional approaches may process spectral information 
without regard for spatial structures in the dataset, tensor 
factorization preserves the spectral-spatial relationship which we 
intend to exploit.  We used a rank-(L, L, 1) decomposition which 
approximates the original tensor as a sum of R components.  Each 
component is a tensor resulting from the multiplication of a low-
rank spatial representation and a spectral vector.  Our approach 
uses the spatial factors, to identify high abundance areas where 
pure pixels (endmembers) may lie.  Unmixing is done by applying 
Fully Constrained Least Squares such that abundance maps are 
produced for each inferred endmember.  Results of this method 
are compared against other approaches based on non-negative 
matrix and tensor factorizations.  We observed a significant 
reduction of spectral angle distance for extracted endmembers and 
equal or better RMSE for abundance maps as compared with 
existing benchmarks. 
 

Index Terms— Spatial Low-rank tensor decomposition, remote 
sensing, hyperspectral image unmixing. 

I. INTRODUCTION 

NE pervasive problem in remote sensing is the 
identification of materials based on their spectral signature 
[1].  When a pixel is recorded by the sensor, it can gather 

reflected radiation from more than one material or substance.  
This happens because there may be an insufficient spatial 
resolution for the sensor to capture individual materials or the 
substances in question are mixed uniformly.  In either case, we 
can infer that mixed pixels have spectra that are some 
combination of the individual substances.  The underlying 
assumption is that for a given scene with thousands of pixels 
there are a few material types such as water, vegetation, soil, 
concrete, different types of sediments, and minerals that have 
constant spectral properties.  

II. BACKGROUND 

Hyperspectral images are 3-dimensional data cubes with two 
spatial dimensions and one spectral dimension with hundreds 
of bands. To apply traditional signal processing algorithms, 
multidimensional arrays are unfolded; usually along the 
spectral dimension.  In the resulting data set, every pixel is 
considered an independent sample of the material.  This 
treatment ignores spatial relationships amongst neighboring 
pixels that could be exploited.  Previous work using tensor 
factorizations for classification or feature extraction is 
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discussed in [2]  Tensor decompositions have also been used 
for blind signal unmixing as demonstrated in [3]. 

A. Hyperspectral Unmixing 

Hyperspectral unmixing (HU) refers to the process of 
separating the spectral components of a hyperspectral image 
(HSI) as a matrix factorization where source signals, namely 
endmembers, are summed in proportion to their abundance plus 
a noise term to approximate the mixed pixels.  This is referred 
to as the linear mixing model (LMM) expressed as [4]: 

 𝐘 = 𝐒𝐀 + 𝐖 (1) 

where Y ∈ ℝM×N, S ∈ ℝM×R, and A ∈ ℝR×N.  Y represents the 
HSI with M spectral bands and N pixels.  The columns of S 
represent the “pure” materials or endmembers, and A is the 
fractional abundance matrix indicating the proportion in which 
endmembers contribute to every pixel.  The term W∈ ℝN 
accounts for noise.  The LMM has two important constraints:  
all elements of  Y, S and A are non-negative (ANC), and 
abundances sum-to-one (ASC).  Solving for S and A cannot be 
done analytically but can be approximated by numerical 
methods. Furthermore, identifying the number of endmembers, 
R, is a problem in itself.  However, there are algorithms to 
estimate R as well such as HySime [5]. 

B. Non Negative Matrix Factorizations 

Matrix factorizations such as Principal Component Analysis 
and Singular Value Decomposition produce orthogonal 
components helpful in dimensionality reduction but do not 
satisfy the ANC and ASC imposed by the LMM.  Also, the 
orthogonal components they produce do not easily translate to 
physical phenomena.  Non-negative matrix factorizations 
(NMF) can be used to separate signals into their constituent 
parts [6].  The non-negativity constraint also makes the 
decomposition easy to interpret as they relate to parts of the 
original data.  Several algorithms exist to compute non-negative 
factors.  Some of the most common ones are Alternating Least 
Squares (ALS/HALS) and Multiplicative Update (MU) [7].  
These methods approximate a solution for S and A by 
minimizing the cost function: 
 𝐶(𝐒, 𝐀) = ‖𝐘 − 𝐒𝐀‖  (2) 
subject to S≤0, and A≤0.  Both algorithms are initialized with 
random inputs and iteratively update S and A until the solution 
converges.  Improvements have been made by adding  
regularization terms to the cost function that promotes sparsity 

resources for completion of this paper.  Email: william.navas@upr.edu, 
vidya.manian@upr.edu 

 

Spatial Low-Rank Tensor Factorization and 
Unmixing of Hyperspectral Images 

William Navas-Auger, Senior Member, IEEE, and Vidya Manian, Member, IEEE 

O



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

2

of the abundance matrix under the assumption that pixels are a 
mixture of few endmembers. The cost function with 
regularization takes the form: 
 𝐶(𝐒, 𝐀) = ‖𝐘 − 𝐒𝐀‖ + 𝜆‖𝐀‖  (3) 
Where ‖∙‖  denotes the lp-norm of the abundance matrix as 
shown on eq. 4. 

 ‖𝑨‖ = ∑ |𝒂𝑟(𝑛)|𝑝𝑅,𝑁
𝑟,𝑛 =1

1/𝑝
 (4) 

Commonly used norms are the l1-norm, also known as the 
Manhattan Distance;  and the l2-norm which is the same as the 
Euclidean Distance.  The use of other norms with p in the range 
(0,1) is discussed in [8], where the authors show that the l1/2-
norm produces improved results as compared to other unmixing 
algorithms.  

C. Tensor notation and definitions 

Using notation from Kolda [9], we will use letters with bold 
script font to denote tensors, bold non-script font denote 
matrices, and bold lowercase indicate vectors. 

Let Y ∈ ℝ × ×…×  be a tensor, where N is the number of 
dimensions (or modes) and In is the size on the nth dimension.  
The number of dimensions is also referred to as the order of the 
tensor.  An HSI cube is a third-order tensor with two spatial 
dimensions of size (I, J) and one spectral dimension of size K, 
such that Y ∈ ℝ × × .  An element of Y is referenced as yijk. 

Definition 1: A n-mode fiber is a column vector whose 
elements are obtained by fixing all tensor indices but the nth one.  
For a third-order tensor, Y ∈ ℝ × × ,  a fiber are is referenced 
as y:jk, yi:k, and yij:, where the colon indicates all elements along 
that dimension. 

Definition 2:  A slab or slice is a matrix obtained by fixing 
all but two indices of a tensor.  For a third-order tensor with 
indices (i, j, k), slabs are denoted as matrices, Yi::, Y:j:, and Y::k. 

Definition 3: The n-mode matrization or unfolding of a 
tensor Y ∈ ℝ × ×…× , is the process of reordering the tensor 
elements into a matrix Y(n), whose columns are the mode-n 
fibers of Y; such that Y(n) ∈ ℝ × ⋯ ⋯  . 

Definition 4: The n-mode product is the dot-product of the n-
mode fibers of a tensor X by the columns of a matrix A where 
X ∈ ℝ × ⋯× ⋯× ×  and A∈ ℝ × .  The operation yields 
a new tensor Y ∈ ℝ × ⋯× ⋯× × .  The n-mode product is 
expressed as Y = X ×n A and it is equivalent to the matrix 
multiplication of A by the n-mode matrization of X, X(n) as 
shown on eq. 6. 
 
 Y = X ×n A    ⇔    Y(n) = AX(n) (6) 
  

D. Tensor Factorizations 

The Tucker decomposition [10], is an N-dimensional analog 
to singular value decomposition (SDV) where a tensor, Y ∈ 
ℝ × ×…×  is decomposed as shown on eq. 7. 

 

 Y = G ×1 F(1) ×2 F(2) ⋯ ×N F(N)  (7) 

G ∈ ℝ × ×…×  and factor matrices F(n) ∈ ℝ ×   Low-rank 
representation is achieved by reducing the dimensions of the 
core tensor G such that Rn < In.   

Canonical Polyadic decomposition (CPD) is a special case of 
the Tucker decomposition where the core tensor G of t has all 
dimensions of the same size and it is also diagonal.  CPD 
represents a tensor as a sum of rank-1 terms.  As opposed to 
Tucker decomposition, CPD is free from rotational ambiguity 
under mild conditions [11].  The tensor rank is defined in terms 
of the CPD as the minimum number of rank-1 components 
needed to exactly reconstruct the original tensor.  The CPD can 
be written as shown on eq (6). 

  Y =  ∑ 𝑓
( )

∘  𝑓
( )

 ⋯ 𝑓
( )  (6) 

Where ∘ indicates the outer product, and fr
(n) ∈ ℝ  is a factor 

for each dimension In.  We will call fr
(1) and fr

(2) the spatial 
factors while fr

(3) is the spectral factor.  If we let 
  𝐄 = 𝑓

( )
∘  𝑓

( )  (7) 
and 
  Yr =  𝐄 ∘  𝑓

( ) (8) 
 
then, it is evident that spatial information represented by the 
rank-1 matrix Er encodes the magnitude of the rth spectral factor 
fr

(3), at a given location.   
 This structure would be analogous to the abundance if ANC 
and ASC constraints are applied.  However, while CPD 
provides an intuitive relationship between spatial and spectral 
content for each component, the limitation on 𝐄  being of rank-
1; makes it insufficient to capture complex shapes under a 
single component.  Many components with similar spectra 
would have to be clustered to produce shapes that capture the 
abundance of materials in the form of an abundance map.      
 Figure 1 shows a CPD with eight components (R=8).  The 
original HSI has four endmembers.  Components Tree-1 and 
Tree-2 have very similar spectral but the optimization generates 
2 components.  Road-2, Road-2, and Road-3 show a similar 
issue where the road is split into 3 components.  Constraining 
the optimization to R=4 will produce the required number of 
components but there aren’t enough degrees of freedom to 
represent spatial features accurately.  

 Block Term Decomposition (BTD) is a generalization of 
CPD.  It allows a tensor decomposition to be written as a sum 
of low-rank terms different than rank-1 [12].  Rank-(L, L, 1) in 
particular, is a 3-way decomposition specifying rank-L, with L 

 
Figure 1.  Components of a CPD computed for the Jasper Ridge HSI using 

CPD with R=8.  The false color plots correspond to the magnitude of Er 
(red is larger), and the plot below each slab is the spectral factor, fr

(3). 
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> 1, for the first two dimensions and rank-1 for the third.   The 
rank-(L, L, 1) can be expressed as: 

  Y =  ∑ 𝐅𝒓∷
( )

𝐅𝒓∷
( )

∘ 𝑓 :
( ) (7) 

where F(1)∈ ℝ × × , F(2) ∈ ℝ × × , and 𝑓( ) ∈ ℝ × .   

 The motivation for using rank-(L, L, 1) decomposition stems 
from the characteristics of an HSI.  Endmembers on a scene are 
in the order of one to ten; while spatial dimension sizes may be 
in the hundreds.  This disparity can be addressed with rank-(L, 
L, 1) in such a way that fewer components are required to 
achieve a good spatial approximation. 

III. METHODOLOGY 

We propose using information from the spatial factors F(1) 

and F(2) as shown on eq. (8) to extract endmembers which will 
later be used to generate abundance maps.   

 𝐄 = 𝐅𝒓
( )

𝐅𝒓
( )   (8) 

These factors multiplied result in a spatial-low rank 
representation of the abundance of one particular spectral 
component.  Hence the name Spatial Low-Rank NTF Unmixing 
(SLR-NTF).  Having estimated endmembers, abundance maps 
are computed using the fully constrained least-squares (FCLS) 
method introduced by [13]. 

 

  
Figure 2. Spatial Low-Rank Non-negative Tensor factorization (SLR-NTF) 

Unmixing. 

Parameter R is set as the number of expected endmembers.  
We can also write equation (7) in CPD form as a sum of LR 
components of rank-1 vectors.  Hence, the resulting tensor is 
shown to be rank-LR.  shown in eq. (9). 

 Y =  ∑ ∑ 𝑭𝒓:𝒍
(𝟏)

∘ 𝑭𝒓:𝒍
(𝟐)

∘ 𝑓:,𝒓
(𝟑)𝑳

𝒍
𝑹
𝒓  (9) 

  BTD is guaranteed to be essentially unique for a tensor with 
tensor rank LR ≤ min(I1, I2).  However, HSIs are not guaranteed 
to have a tensor rank less than the size of their spatial 
dimensions.  However, since the rank is bounded by the total 
number of linearly independent components, we chose L 
proportional to the minimum size of the spatial dimensions and 
inversely proportional to R.  Additionally, we weight L by the 
ratio of spatial to spectral size.  This weight, min(I1, I2)/(I3),  
adjusts L, increasing it when the spatial size is large relative to 
the spectral size and or reducing it when the opposite is true.  
An increase of spatial size relative to the spectral size would 
presumably increase the tensor rank assuming the spectral rank 
remains the same and is significantly smaller than the HIS 
dimension.  The calculation of L is shown in equation (10). 

 L=
𝐦𝐢𝐧( , )

 
  (10) 

The selection of an optimal value of L based on signal unmixing 
continues to be a topic of research. 

 The rank-(L, L, 1) decomposition was implemented as a non- 
non-linear least-squares optimization in Tensorflow 2.4 and the  
Adam [14] algorithm.  Adam is a stochastic gradient descent 
(SDG) method proven to work well with neural nets and also 
found to be fast on this application. We used Glorot Gaussian 

initialization [15] which resulted in faster convergence as 
compared to random uniformly distributed values in the range 
[0,1].  Glorot initialization scales values on a narrow range that 
is inversely proportional to the factor sizes.   

High magnitude regions on Er, indicate a strong abundance 
of endmember r. Reconstructed pixels are selected from the 
regions where Er/max(Er) exceeds a threshold =0.95. and the 
average of the selected pixes at those locations becomes the 
reconstructed endmember as shown on eq. (11).  

 𝑠 = ∑
Y' ,

𝐄 ,

(𝐄 )
,

  (11) 

Having a set of endmembers, we compute the abundance of 
materials through FCLS [13].  This method solves the least-
squares inverse problem while applying the non-negativity 
constraint and the sum-to-one constraint imposed on the 
abundance map.     

Since SDG is sensitive to initial condition and HSIs do not 
necessarily meet the requirements for uniqueness, ten runs for 
each input HSI are executed.  For each run, the root mean square 
error (RSME), and spectral angle difference (SAD) are 
computed, respectively. 

 𝑅𝑆𝑀𝐸(𝑎 , 𝑎′ ) = ∑ (𝑎 (𝑛) − 𝑎 (𝑛))  (12) 

where ar is the reference abundance and a’r is the computed 
abundance for the rth endmember. 

 𝑆𝐴𝐷(𝑠, 𝑠′) =
,

‖ ‖‖ ‖
 (13) 

where, <∙,∙> denotes the inner product, s is the reference 
endmember, and s’ the computed one. 

IV. RESULTS 

The HSI datasets including ground truth endmembers and 
abundances used were obtained from Y. Zhu [16].  We 
compared results against Vertex Component Analysis (VCA), 
NMF, NMF with l1-norm and l1/2-norm regularization, and 
matrix-vector NTF (MV-NTF) which is the only tensor-based 
approach. 

For Samson, results are excellent showing a 64% and 62% 
reduction in SAD and RMSE.  For Jasper Ridge, RMSE 
reduces to about 60% and SAD reduces by 29% compared to 
NMF-L1.  Unmixing on the Urban data set shows a SAD 
reduction of 42% against MV-NTF which is second best.  The 
Urban dataset lacked RSME measurements. 

TABLE I 

DIMENSIONS OF EACH HSI AND L PARAMETER SETTING AS PER EQ. (7). 

HSI set I1, I2 I3 R L 
Samson#1 95, 95 156 3 19 
J.Ridge#2 100, 100 198 4 12 
Urban 307, 307 162 4 145 

 
TABLE II 

SPECTRAL ANGLE AND RMSE BENCHMARKS FOR SAMSON#1 
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Figure 2. Samson#1 unmixing results. (a) Ground truth abundance. (b) 

computed abundance. (c) Reconstructed endmembers (solid blue) along with 
ground truth endmembers (dotted red). 

TABLE III 
SPECTRAL ANGLE AND RMSE BENCHMARKS FOR JASPER RIDGE#2 
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Figure 3. Jasper Ridge#2 unmixing results. (a) Ground truth abundance. (b) 

Computed abundance. (c) Reconstructed endmembers (solid blue) along with 
ground truth enmembers (dotted red). 

TABLE IV 
SPECTRAL ANGLE AND RMSE BENCHMARKS FOR URBAN 
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(c) 

Figure 4. Urban unmixing results. (a) Ground truth abundance. (b) Computed 
abundance. (c) Reconstructed endmembers (solid blue) along with ground 

truth endmembers (dotted red). 

V. CONCLUSIONS 

SLR-NTF unmixing shows improved SAD and RMSE 
performance over VCA-FCLS, NMF, and MV-NTF and NTF 
on the benchmark HSI datasets.  Careful selection of spatial 
low-rank L performs better than a fixed proportion of the spatial 
dimension.  Additional improvements may be possible by 
characterizing its behavior with synthetic images; particularly, 
the estimation of tensor rank based on image content.  The 
tensor factorization step is inherently more computationally 
complex than non-tensor approaches, but the advantages for the 
simultaneous analysis of spatial-spectral structure are evident.  
The advent of faster hardware and the ubiquity of GPUs are 
making these techniques practical. 
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