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ABSTRACT

The advancement of instruments makes processing of hyper-
spectral data for monitoring phytoplankton dynamics more
viable. Methods used operationally for retrieval of chl-a, an
important indicator of phytoplankton, are developed for mul-
tispectral systems and optically deep waters. Coastal waters
are important for the aquaculture industry, marine science,
and environmental monitoring. Data rate limitations make the
use of sensors with high spectral resolution difficult. Here, es-
timation of chl-a from top of the atmosphere reflectance using
“Partial Least Squares”- and “Least Absolute Shrinkage and
Selection Operator”-regression is compared with the internal
consistency of the OC4 algorithm by NASA Ocean Biology
Processing Group.

The models perform better in terms of NRMSE and R?
when validated with a subset of the total data and with a sepa-
rate scene. This is demonstrated by using experimental hyper-
spectral scenes from the Hyperspectral Imager for the Coastal
Ocean (HICO) mission, processed through SeaDAS.

Index Terms— Hyperpsectral Imaging, Remote Sensing,
Chlorophyll-a Concentration, Ocean Color

1. INTRODUCTION

The study of Ocean Color has many potential societal benefits
[L]. Chl-a concentration monitoring can provide the aquacul-
ture industry and the government information regarding wa-
ter quality, biogeochemical cycles, and fisheries management.
For research, the chl-a concentration provides a bio-marker
for the state of the marine ecosystems, as well as an aid to
modeling the ocean state and monitoring climate change.
With traditional band-ratio algorithms for chl-a estima-
tion, like OC4, it has been shown that additional spectral
information improves the results [2]]. Successful application
of band-ratio algorithms in optically complex waters is of-
ten challenging due to overlapping of spectral signals from
phytoplankton (chl-a), Colored Dissolved Organic Matter

(CDOM), and Total Suspended Matter (TSM) that confound
the model [3]].

Nonlinear machine learning methods, e.g. Neural Net-
works (NN) or kernel-based regression models such as Gaus-
sian Process Regression (GPR) and Support Vector Machines
(SVM), can give good chl-a estimations, but will also have
a higher level of complexity [4]. The relative relevance of
the input features is less transparent, it is more challenging
to foresee the model behavior by theoretical analysis, and
the models themselves will be computationally more demand-
ing to use for estimation when compared to linear prediction
models [3} 14, 5. However, for any linear model, nonlin-
ear patterns can be compensated for by the appropriate pre-
processing or by kernel functions [6]].

Partial Least Squares Regression (PLSR) has been demon-
strated to perform with greater accuracy than optimized band
ratio algorithms when predicting chl-a concentrations with
field-retrieved hyperspectral water-leaving reflectance [3]].
Hyperspectral water-leaving reflectance values are depen-
dent on an accurate atmospheric correction[2} [7]. This can
be difficult to achieve in coastal regions, and hyperspectral
atmospheric correction for ocean color is an active area of
research [7, (8, 2].

In this paper, different approaches to perform regression
analysis and model development using top-of-the-atmosphere
reflectance values from the hyperspectral image data from the
HICO mission are used to estimate the chl-a concentration.
The chl-a concentration is computed by SeaDAS. The results
from the regression are then compared to the OC4 band-ratio
algorithm.With the demonstrated approach the PLSR mod-
els developed are intuitively interpretive, less computation-
ally demanding, and generate promising results. Shown with
different designs for validation.

2. HICO DATA AND SEADAS

The Hyperspectral Imager for the Coastal Ocean (HICO) mis-
sion was a hyperspectral instrument onboard the International



Space Station capable of capturing scenes with 128 different
wavelengths in a range from 350 to 1080 nm at a 5 nm reso-
lution [9].

Here, hyperspectral scenes from the HICO mission, pro-
cessed and quality controlled through NASA OBPG software
SeaDAS, are used as the desired values for chl-a. The re-
flectance data used is derived from the standard atmospheric
correction provided by SeaDAS for HICO.

Fig. 1: HICO Sample Image Gallery Scenes from different
locations around the world used for training and validation.

The scenes were selected due to the low adverse effects
from atmospheric interference and good overall imaging qual-
ity from the HICO Sample Image Gallery [10]. The scenes
can be seen in figure |I| and their locations are, from the left,
southeast coast of New Zealand (A-C), US west coast (D-F),
New Caledonia, and Italy.

The chl-a concentrations in mg/m 2 for the training and
the verification data sets are displayed in Figure[2] The HICO
chl-a data used as ground truth are derived through SeaDAS
which, as standard, used the OC4 algorithm with MERIS co-
efficients and wavelengths [11]]. In SeaDAS, the hyperspec-
tral data is subsampled to the MERIS bandwidths when deriv-
ing chl-a. From each scene, 700 sample spectra are taken for
training, and 300 different spectra are taken for verification in
the initial validation procedure. In the secondary validation
procedure, the fourth scene from the left, scene D, in Figure
[Tis kept out and only used as a validation data set, as it has a
good dynamic range. See section [4] for details about the val-
idation procedures. The chl-a concentration for each sample
can be seen in Figure 2] for the first validation procedure.

3. METHODS

A conceptual description of the different algorithms and their
advantages and shortcomings are presented. A complete
derivation of the algorithms is beyond the scope of this paper,
but references are provided.

The preprocessing of the input variables in this paper in-
corporates known physical relationships [3]. Only the radi-
ance signals from 400 to 900 nm are used, which leaves 87
spectral bands. The wavelengths outside this range have been
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Fig. 2: Chl-a concentrations for the sampled data

reported as noisy [9]. No preprocessing in terms of dimen-
sionality reduction has been performed.

Top-of-atmosphere reflectance p()\), can be defined at a
given wavelength A, to be related to the radiance L(\), the ex-
traterrestrial solar irradiance Fj(\), and the solar-zenith angle
6. as given in equation (I) [7].

p(A) = TL(A)/(Fo(A) cos(bo)) (D

First, with the assumption that the variations in Fy(\) are
small compared to the sun angle effects, the reflectance values
are approximated as p(A) by dividing the radiance data with
the solar zenith angle.

Secondly, the effect of attenuation of light is accounted for
by computing the log values of the approximated reflectances
as p(A) = logyo(p(A))[12].

Finally, the input variables have been centered and scaled
to adhere to different absolute values and variation for a given
wavelength [3]]. This is given in equation (2), where Z is the
new variable, 5() is the old, p() is the mean, and o, is the
standard deviation.

@zi_ )

3.1. OC4 by NASA OBPG

The OC4 algorithm developed by NASA OBPG [11]], pre-
sented in equation @), returns the near-surface concentration
of chl-a in mg/m~2. The algorithm uses an empirical re-
lationship derived from in situ measurements of chl-a con-
centration and corresponding above-water remote sensing
reflectances R,,, with 4 spectral bands [2]. In this paper,
the implementation of the OC4 algorithm uses the spectral



bands closest to the ones used by the SeaWiFS multispectral
imager[13L2]. R,s(Agreen) is the band closest to 555 nm, and
Ry s(Apiue) is the maximum of the bands closest to 443, 490,
or 510 nm. The a; coefficients used in the implementation of
OC4 presented here were found using ordinary least squares
on the training data presented in Figure 2] [3].

logio(chl_a) = Z a; (logm (W)) 3)
. Ts green
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3.2. Partial Least Squares

Partial least-squares regression (PLSR) iteratively relates
data matrices using linear multivariate models that reduce
collinearity and noise within a given dataset. It is a two-step
algorithm that first finds uncorrelated components in the vari-
ables of a given data set and then performs the least squares
regression on these components. A more in-depth description
of the algorithm can be found in [14].

This generates models with high levels of interpretabil-
ity, but in their simplest form cannot accommodate for strong
nonlinear effects|5]).

3.3. Least Absolute Shrinkage and Selection Operator

Least Absolute Shrinkage and Selection Operator (LASSO)
regression [[15] was performed using the approach found in
equation (4], where y; is chl-a values, ; is the regression
coefficients, X is a matrix with all the pre-processed data,
and ¢ is a threshold that was iterated over with 10-fold cross-
validation of the training data. The threshold that gave the
lowest mean square error was selected.

This also generates models with high levels of inter-
pretability, but in their simplest form cannot accommodate
strong nonlinear effects. This method does not seek to find
any covariation between variables. A vector of all ones is
represented as 1 .

g;ig{ll(yi—ﬂoljv—xmwi} st. 1Bl <t @

4. RESULTS & DISCUSSION

Presented in this section is a discussion comparing the results
in terms of regression coefficients, Normalized Root Mean
Square (NRMSE) and R-squared (R2) values for OC4, PLSR
and LASSO.

All models were tested with the verification data set
shown in Figure [2| as well as separating out the fourth scene
from the left in Figure[I] scene D as the scene inhibits a good
dynamic range in terms of chl-a.

4.1. OC4 Algorithm

The a; coefficients used in equation (3) for the OC4 is com-
puted by taking the least-squares fit of the training data set.
This should give OC4 the best possible starting point.

As can be seen in Figure ] the OC4 algorithm performs
similar to previously reported tests [2, [11]]. With validation
using a subset of the total data i.e. the verification data set
no clear trend in the residuals can be found. The algorithm
struggles to determine chl-a > 4mg/m3, with the coefficients
found.

For the validation with a separated scene, scene D in Fig-
ure [T] the OC4 algorithm can determine a qualitative chl-a
concentration within a given scene from SeaDAS, but is not
able to quantify it accurately.
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Fig. 3: Regression coefficients from PLSR and LASSO

4.2. Regression Models

LASSO and PLSR are both linear regression models that pro-
vide interpretable coefficients, as can be seen in Figure[3] The
models developed deployed 10-fold cross-validation with the
training data set when determining the weights of the regres-
sion. For the PLSR the average mean square error from the
10-fold CV was used to select the number of components, i.e.
20 components, to be used in the regression.

As can be seen in Figure [] both the LASSO and PLSR
models perform similarly on the given data set. From the
results, PLSR has a potentially negligible higher performance
in terms of NRMSE and R-squared when compared with
LASSO. It should be noted that LASSO here uses 67 of
the original 87 variables, which can be valuable from an
operational point of view in terms of execution time. The
regression models also struggle to determine higher chl-a.
Possibly, due to lack of data or non-linear effects.
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Fig. 4: Results from scenes showing Normalized Root Mean Square and R squared.

For the validation with a separated scene, scene D in Fig-
ure|[T] the regression models are also able to determine a rela-
tive and more accurate quantification of the chl-a. The regres-
sion models have a better performance to the OC4 algorithm
with the validation scheme using data from all scenes.

4.3. Comparison

It should be noted that this is a test of the internal consistency
of OC4 within the SeaDAS software, i.e. how different bands
used as a basis for OC4 will perform. A more proper data set
with ground-truth samples measured by other means would
be a better study, and could even yield an even higher per-
formance increase with the approach given in this paper. The
approach used here should benefit the OC4 algorithm.

With the preprocessing described in section [3] the vari-
ables are an atmospheric correction and a 4™ order polyno-
mial kernel [6] from having the same form as equation (3).
The data representation chosen for regression incorporates
a well-characterized non-linear physical relationship, e.g.
transformation from radiance to reflectance and light attenu-
ation. This ensures that the machine learning algorithms, i.e.
different forms for regression, do not put a lot of emphasis on
estimating non-linear relationships.

As can be seen in Figure ] both the LASSO and PLSR

models perform better than the OC4 algorithm in terms of
NRMSE and R-squared for the used validation schemes. The
two regression models have a similar performance in terms
of the chosen metrics, but the execution time of the LASSO
regression was on average 1.8 times faster.

From the coefficient illustrated in Figure[3] it is clear that
the LASSO and PLSR approach puts emphasis on similar
parts of the electromagnetic spectrum. It is also clear that
some of the coefficients, > 555 nm and < 443 nm, have high
expressive power in terms of determining the total chl-a con-
centration. The wavelengths 555 nm and 443nm indicate the
maximum and minimum of the OC4 algorithm. That addi-
tional spectral information improves chlorophyll determina-
tion, and this corresponds well with other findings investigat-
ing band-ratio algorithms [2]].

5. CONCLUSIONS & FUTURE WORK

The presented machine learning models seem may provide
absolute measurements of chl-a concentration from only us-
ing the measured top-of-the-atmosphere radiance, the attitude
and solar angle information related to the hyperspectral sen-
SOr.

Multivariate methods such as PLSR seems to be suitable



for deriving some geophysical variables of interest such as
chlorophyll-a concentration. At the same time, these linear
methods can provide an interpretable derivation of results in
the form of coefficients. This makes it easier to understand
why the models derive the values that they do, which in return
can provide reassurance to the end-user.

The LASSO model, when compared to PLSR, provided a
reduction to 54% in the average computational time per pixel,
encourages its use in computationally constrained systems.
These results are implementation and hardware dependent.

When doing machine learning there is a considerable ad-
vantage of having large data sets with verified ground truth,
but this is not widely available for hyperspectral ocean color
remote sensing data, thus HICO data quality assured through
SeaDAS was used. When more ground truth data become
available with future space missions and systems, better mod-
els could be developed using this approach. Also, the data
used in this paper does only represent a subset of the full
range of naturally occurring chlorophyll-a concentrations.
With more data, better models could be developed.

Preprocessing with targeted binning of spectral regions of
interest for chlorophyll-a concentration, found through analy-
sis of the regression coefficients, could improve the signal to
noise ratio of the spectra and in return improve the estimation
performance, and should thus be further investigated.
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