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ABSTRACT

Rice blast is considered as the most destructive disease that threatens global rice production and causes severe
economic losses worldwide. A detection of rice blast infection in an early manner is vital to limit its expansion
and proliferation. However, little research has been devoted to spectral detection of rice leaf blast (RLB) infection,
especially at the asymptomatic or early stages. To fill the gap, this study aimed to examine the feasibility of de-
tecting RLB infection from leaf reflectance spectra at asymptomatic, early and mild stages of disease development.
Greenhouse experiments were conducted over two consecutive years to collect hyperspectral data (350-2500 nm)
on various days after inoculation (DAIs) for the three infection stages. These hyperspectral data were processed
to select disease specific spectral features (DSSFs). Such DSSFs were then used to feed the machine learning based
sequential floating forward selection (ML-SFFS) methodology for determining the optimal feature combination
(OFC) and overall accuracy (OA) in the detection of RLB at various infection stages.The results demonstrated that
the rice plants displayed considerable biochemical and spectral variations and this pattern of variations existed
consistently during plant-pathogen interactions. A multivariate pool of DSSFs comprising two reflectance bands,
fourteen SIs, and five continuous wavelet coefficients, were determined for revealing the dynamic response of
RLB infection across two years. The combination of 2 to 4 spectral features selected by the ML-SFFS algorithm
was sufficient to identify infected leaves with classification accuracies over 65% and 80% for the asymptomatic
and early infection stages, respectively. The OA could rise up to 95% for the mild stage. Compared to the use of
all DSSFs with a support vector machine (SVM) classifier, the SVM-based SFFS (SVM-SFFS) algorithm prevailed
in the classification accuracy up to 10% over the sampling period. Our results demonstrated the feasibility of
accurate classification of RLB infected samples by ML-SFFS. This study suggests that reflectance spectroscopy has
great potential in the pre-visual detection of RLB infection and airborne or spaceborne imaging spectroscopy is
promising for the mapping of early occurrence and severity levels of RLB infection at large scales.

1. Introduction

throughout the entire growing season of rice in cool and rainy sum-
mers (Fang et al., 2019; Kobayashi et al., 2001). Since this disease

Rice serves as the staple food for half of the world's population
(Sharma et al., 2012). Rice blast (RB), caused by the fungal pathogen
Magnaporthe oryzae, is considered as the most devastating and wide-
spread disease in the rice cultivation regions worldwide (Deng et al.,
2017). RB outbreaks can oceur
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is highly contagious, the abundant conidia from disease lesions could
spread quickly from plant to plant by wind or water under the con-
ditions of high humidity and insufficient sunlight (Liu et al., 2019b;
Talbot, 2003). Eventually, significant losses in rice production and
environmental
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damage could occur as a result of large-scale outbreaks of RB disease,
especially in Asia as the largest rice production region in the world (Wil-
son and Talbot, 2009). It is estimated that the annual loss of rice yield
due to the RB disease is enough to feed 60 million people (Dean et
al., 2005; Wilson and Talbot, 2009; Yang et al., 2014). Dependent
on the infected organs, the fungal pathogen Magnaporthe oryzae could
cause two major types of pathosystems, namely rice leaf blast (RLB) and
rice panicle blast (RPB). The pathogen infection mainly occurs on the
leaves at tillering and jointing stages and on the panicles after heading
(Kobayashi et al., 2001). Given the direct effect of RPB on grain yield
and quality, previous research has investigated its spectral responses and
accurate classification through detached samples (Kobayashi et al.,
2001; Liu et al., 2010; Wu et al., 2009). However, the pathogens
leading to panicle infection result from the spores formed on the leaf le-
sions (Kobayashi et al., 2001). This pattern of infection strengthens
the importance of early detection of RLB due to its close association with
RPB. Moreover, when pathogen infection occurs on leaves, the leaf tis-
sue is severely damaged and photosynthesis is adversely affected (Tal-
bot, 2003).

Accurate detection of RLB at the early infection stage is critical for
containing the expansion and reducing the potentially larger impacts.
Traditional methods for RLB detection mainly rely on visual inspection
by experts in the field. This approach requires a large number of expe-
rienced professionals and is time consuming and labor intensive. Addi-
tionally, it is difficult to detect early RLB infection under field condi-
tions when no symptoms are visible on the leaves. Therefore, a more
effective approach is essential for accurately detecting RLB at an early
stage. Remote sensing has been proved to be an effective and non-de-
structive technique for detecting crop diseases across different spatial
scales (Franceschini et al., 2019; Huang et al., 2014; Mahlein et
al., 2013; Rumpf et al., 2010; Shi et al., 2018b; Zhang et al.,
2012b). Although a few studies have examined the estimation of RLB
disease severity and the identification of infected leaf samples at late
symptomatic stages (Feng et al., 2009; Zhou et al., 2014), little re-
search has been devoted to the spectroscopic detection of RLB at the
early infection stage, accompanied with examinations of leaf biochemi-
cal properties. Some studies have demonstrated that the early responses
of plant biotic stress, which manifested as alterations in plant physiolog-
ical parameters or photoprotective mechanisms, could be detectable us-
ing sensitive spectral indicators (Cheng et al., 2010; Hardisky et al.,
1983; Huang et al., 2014; Mahlein et al., 2013; Morel et al., 2018;
Zarco-Tejada et al., 2018; Zhou et al., 2018). The minor spectral
and physiological alterations could pose great challenges for the unam-
biguous identification of infected samples at the early stage (Cheng et
al., 2010; Mahlein et al., 2013).

Reflectance spectroscopy is favorable for revealing the subtle spec-
tral signals, which are induced by complex plant-pathogen infections
and could span a wide range of the electromagnetic spectrum (Mahlein
et al., 2018). For some applications, the individual reflectance nar-
rowbands are found to significantly improve the classification of vari-
ous vegetation types over broadbands (Thenkabail et al., 2004). As
a simple and effective tool for characterizing spectral variations, SIs
were also used to highlight factors of interest and suppress the in-
fluence of other factors and represent a popular tool for plant dis-
ease detection (Calder6én et al., 2013; De Castro et al., 2015;
Huang et al., 2007; Mahlein et al., 2010; Penuelas et al., 1995;
Zhang et al., 2012a; Zhang et al., 2019).
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Some studies focused on developing disease-specific SIs for various crops
(Huang et al., 2014; Mahlein et al., 2013), since the diagnostic spec-
tral responses may be dependent on the disease (Mahlein et al., 2018;
Mahlein et al., 2019). In contrast, other studies transformed spectral
reflectance in different ways, such as spectral derivative and continuous
wavelet transformation, to enhance the subtle spectral signals induced
by pathogen infection (Cheng et al., 2010; Luo et al., 2013; Shi et
al., 2018a; Zhang et al., 2014; Zhang et al., 2012b). For example,
Cheng et al. (2010) developed a novel wavelet-based approach for the
spectroscopic detection of green attack damage in lodgepole pine nee-
dles. However, difficulties still existed in these studies when distinguish-
ing infected and healthy samples at the early stage using a single type of
spectral features.

Besides the individual spectral indicators, physically-based ap-
proaches based on radiative transfer models (RTMs) have also gained
growing attention in plant disease and pest detection at different scales
(Al-Saddik et al., 2018; Badnakhe et al., 2018; Calderén et al.,
2013; Hernandez-Clemente et al., 2017; Hornero et al., 2020; Li
et al., 2020b; Lin et al., 2018; Morel et al., 2018). One of the main
merits for RTM-based approaches is that the plant-light interactions
could be described using leaf- or canopy-level physical models (Jacque-
moud et al., 2009; Jay et al., 2016; van der Tol et al., 2009).
Therefore, the inversion of RTMs enables the detection of changes in
plant functional traits. For example, recent studies have assessed the
relative importance of various plant traits retrieved using RTMs in the
detection of Xylella fastidiosa (Xf) infection over olive orchards, and
identified the anthocyanin content and solar-induced chlorophyll flu-
orescence (SIF) as the most important traits (Poblete et al., 2020;
Zarco-Tejada et al., 2018). Similarly, the anthocyanin (Morel et
al., 2018) and chlorophyll (Lin et al., 2019) contents inverted with
the RTMs model from hyperspectral images were found to be particu-
larly sensitive to the occurrence of disease at different scales. Although
the RTM-based approaches have exhibited superiority in interpretabil-
ity and mechanistic modeling on the detection of pathogen infection in-
duced spectral alterations, the limitation stemming from the computa-
tional burden of model inversion hampers the efficiency of plant disease
monitoring.

Plant-pathogen interactions are considered to be complex processes
that lead to changes in multiple physiological or biochemical proper-
ties of crops. Therefore, the spectral responses to a crop disease could
be complex and may not be characterized by a single type of spectral
indicators such as SIs. Recently, much attention has been paid to the
integration of multiple sensitive spectral indicators as an effective ap-
proach for early detection of crop diseases (Behmann et al., 2015;
Huang et al., 2014; Mahlein et al., 2019; Mahlein et al., 2013;
Rumpf et al., 2010; Shi et al., 2018a; Zarco-Tejada et al., 2018).
A simple approach is to combine the most relevant wavelengths with
sensitive spectral indices for developing disease specific spectral indices
(Huang et al., 2014; Mahlein et al., 2013). Multiple sensitive SIs
could also be automatically fed to classification models for disease de-
tection (Behmann et al., 2015; Rumpf et al., 2010; Shi et al.,
2018a; Zhang et al., 2012b).

Recently, several machine learning algorithms fed by a pool of re-
motely sensed plant functional traits were successfully applied to the
pre-visual detection of Xylella fastidiosa infection symptoms (Poblete
et al.,, 2020; Zarco-Tejada et al., 2018). Other studies have also
demonstrated the merits of machine
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learning with different sensitive indicators as the input for plant dis-
ease detection (Behmann et al., 2015; Chemura et al., 2016; Ghosal
et al., 2018; Zhang et al., 2019). Regardless of the number of in-
put variables, these studies supplied all the spectral features or retrieved
biochemical/biophysical traits to the models for disease classification or
regression. Obviously, they made no attempt to optimize the combina-
tion of input variables for more efficient detection of plant diseases nor
for better understanding the contribution of pertinent spectral features
to disease detection. Previous studies have demonstrated the combina-
tion of feature subsets can significantly improve the efficiency of classi-
fication models without seriously sacrificing the classification accuracy
(Hamed et al., 2020; Hu et al., 2019; Huang et al., 2019). How-
ever, many studies have found that the performance of machine learn-
ing algorithms could be significantly affected by the number of input
variables or spectral features (Fallahpour et al., 2017; Hu et al.,
2019; Kaushal and Swarnajyoti, 2018). In particular, machine learn-
ing classifiers have been integrated with feature selection algorithms to
improve the efficiency and classification performance in fluorescence
spectroscopy for nucleotide identification (Huang et al., 2019). Al-
though their machine learning and sequential floating forward selection
(ML-SFFS) methodology exhibited the potential for fluorescence spec-
trum shape analysis, it has not been applied to reflectance spectroscopy
of vegetation for disease detection purposes. In addition, the relative im-
portance of each indicator in the input data may vary with disease infec-
tion stage (Poblete et al., 2020; Zarco-Tejada et al., 2018). Thus, it
remains unclear how the optimal combination of multiple spectral indi-
cators affects the performance of disease detection at different stages of
RLB infection.

The overall goal of this research was to develop a classification
methodology with ML-SFFS for the spectroscopic detection of RLB in-
fection at various stages by separating healthy leaves from infected
leaves. Thus, the specific objectives were: (1) to examine the responses
of leaf biochemical properties to RLB infection and the physiological
foundation of spectroscopic detection, (2) to determine the disease-spe-
cific spectral features (DSSFs) in the form of reflectance bands, SIs and
wavelet coefficients based on their spectral separability between healthy
and infected leaves, and (3) to evaluate the ML-SFFS algorithms in terms
of classification accuracy and optimal feature combination (OFC) at
asymptomatic, early and mild infection stages.

2. Material and methods
2.1. Experimental design

2.1.1. Rice planting and artificial inoculation

The greenhouse experiments were conducted in 2018 and 2019
at the Pailou experimental base of Nanjing Agricultural University lo-
cated in the middle of Nanjing, Jiangsu province, China (118°51’ E,
31°57’N). The rice seeds were first sowed in the field and then trans-
planted into plastic pots (three plants per pot) on June 25 of 2018
and June 10 of 2019. Three rice varieties were grown in plastic pots
(35 cm diameter x 32 cm height) filled with paddy clay soil. A total
of 36 (12 pots per variety) and 24 (8 pots per variety) pots were used
for the biochemical and spectral measurements in 2018 and 2019, re-
spectively. Data collected from the leaves of multiple varieties in dif-
ferent years provided an opportunity to evaluating the reproducibil-
ity and reliability of the findings on disease detection. To ensure lo-
cal management practices in the greenhouse
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environment, the basal nutrition fertilizers (Nitrogen provided by urea,
150 kgha=%; P,0s, 135 kgha™% and K,0, 18.3 kgha=2) were applied
prior to transplanting and a second nitrogen topdressing (N,
150 kg-ha=2) was applied during the tillering stage. The rice plants were
irrigated as needed to ensure that the soil in each pot is always covered
by a shallow layer of water. All plants were placed outdoors and were
not transferred to the greenhouse until one week before the inoculation
treatment. The greenhouse comprised two layers of transparent materi-
als and equipped with air conditioning and humidifying facilities to pro-
vide suitable environmental conditions (26-32 °C, relative humidity of
over 90% and a photoperiod of 14 h) for the artificial inoculation of RLB
pathogen. The inoculation treatments were carried out at the tillering
stage dating August 8 of 2018 and July 15 of 2019, respectively.

The artificial inoculation operations were conducted to induce RLB
infection on rice leaves in 2018 and 2019. A mixture of various blast
pathogens, which were provided by a rice breeding team from State Key
Laboratory of Crop Genetics and Germplasm Enhancement at Nanjing
Agricultural University, was used to inoculate the plants. A conidial sus-
pension with 1 X 10° Magnaporthe oryzae conidia per ml was sprayed
on the leaves uniformly under greenhouse conditions. After inoculation,
all plants were completely covered with black, light-tight plastic materi-
als for 48 h. Temperature (26-32 °C), relative humidity (>90%) as well
as light conditions were strictly controlled to provide suitable conditions
for successful leaf infection.

2.1.2. Definition of the disease infection process

The disease severity is defined to characterize the different devel-
opmental phases. Previous studies often defined the disease severity
at leaf level as the average percentage of infected surface area (Jr et
al., 1991; Wolf and Verreet, 2002). However, the disease severity
was also assessed by visually inspecting the samples at various scales
to better describe the disease infection process (Bock et al., 2020;
Zarco-Tejada et al., 2018). Although the infection process was not en-
tirely consistent across all leaves, the overall infection processes were
roughly defined by visually inspecting every sample for symptoms of
disease lesions in this study. The average disease severity was assessed
on four levels according to the size and status of leaf lesions. Specif-
ically, the asymptomatic stage was defined as the period when obvi-
ous disease lesions had not yet appeared on infected leaves (Fig. 1A).
The leaves that eventually exhibited obvious and stable spindle disease
lesions were classified as infected samples although the spots were in-
visible to the naked eyes at the asymptomatic stage (Fig. 1A). The
leaves with a clean surface during all sampling days were classified as
healthy samples. The early infection stage indicated that a few watery
lesions (usually only one or two) could be observed on infected leaves
in the greenhouse, but are often not easily noticed under field con-
ditions (Fig. 1B). The mild infection stage was defined as the period
when several small brown spindle lesions could be easily observed on
the surface of infected leaves (Fig. 1C). Generally, the leaf surface at
this stage appeared normal beyond the necrotic lesions. The severe in-
fection stage was characterized by the multiple distinct fusiform plaques
formed on the leaf surface and the signs of wilting and yellowing sur-
rounding the lesions (Fig. 1D). Continuous visual inspection of the same
leaf was performed to ensure that no samples were misclassified during
the whole test period. Since our focus was on the detection of RLB in-
fection at the asymptomatic, early, and mild stages, samples from the
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Fig. 1. True colour images of rice leave under various disease severity levels (A. asymptomatic; B. early infection; C. mild infection; D. severe infection) as defined in this study.

severe infection stage were not included for subsequent analysis.

In 2018, the representative plant samples were selected prior to inoc-
ulation and then measured from asymptomatic (days after inoculation,
DAL 1, 3, 5, 7, 10) to early infection stages (DAI 12, 17, 21). In 2019,
the spectral and biochemical measurements were carried out from the
early infection (DAI 8, 11, 16) to the mild infection stage (DAI 20, 28,
35).

2.1.3. Experiment setup

To determine the spectral and biochemical variations on the same
infected leaves, we planted 36 pots of three susceptible rice varieties
(Wuyungeng 7, Nipponbare, and Nangeng 44) for data collection from
asymptomatic to the early infection stages in 2018. All samples were
subjected to the same growth conditions, including environmental setup
and nutrient levels. For each plant, three to five fully expanded leaves at
the same leaf-order were selected and labeled with colour markers. Con-
tinuous biochemical and spectral measurements were then conducted on
the same labeled leaves from DAI 1 to DAI 21. At the same time, RGB
images of each sample were collected to according to Li et al. (2019).
Eventually, infected leaves were observed in 26 of the 36 pots. The av-
erage spectral and biochemical parameters were calculated separately
over all infected and healthy leaves in each pot for every DAL Finally,
26 pairs of samples (26 infected and 26 healthy samples) were collected
per sampling day (Table S1).

In 2019, a total of 24 pots of three susceptible rice varieties (Wuyun-
geng 7, Wuyungeng 23, and Nangeng 44) were grown in the same way
as in 2018 Experiment for sampling from early to mild infection stages.
With regard to rice variety, Nipponbare used in 2018 was replaced with
Wuyungeng 23 in 2019 because Nipponbare leaves were found to be very
fragile during the preparation for biochemical and spectral measure-
ments. In addition, all of the measurements were conducted on the inde-
pendent leaves on each sampling day from early (Fig. 1B) to mild infec-
tion stages (Fig. 1B) for obtaining a broad diversity of infected samples.
Three pairs of infected and healthy leaves at the same leaf-order were
randomly selected from each pot on each sampling day for spectral and
biochemical data collection. Finally, spectral and biochemical data were
collected from 45 pairs of infected and healthy samples from 15 pots (no

infected leaves were observed in the other nine pots) (Table S1). The
dates of measurements in the two years were determined by the expan-
sion of the disease spots on the leaves. Therefore, the dates of taking
measurements and the interval between the two measurements were in-
consistent between 2018 and 2019 to maintain reasonable workload.

2.2. Data collection

2.2.1. Measurements of leaf reflectance spectra

The FieldSpec 4 Hi-Res spectroradiometer (Analytical Spectral De-
vices, Boulder, USA) equipped with a leaf clip was used to measure the
leaf reflectance for the 2018 and 2019 experiments. The spectral sam-
pling interval of the collected spectra is 1.4 nm in the 350-1000 nm re-
gion and 1.1 nm in the 1001-2500 nm region. A contact fiber-optic ca-
ble (1.5 m) coupled with an array detector (with a field of view FOV of
25°) of the FieldSpec 4 was utilized to capture light reflected from the
target. The leaf clip provides a white reference panel with a reflectance
of about 99% and a black background panel with a reflectance of lower
than 1%. The black background panel is mainly used as the background
for sample testing while the white reference panel is used to perform
dark current correction and optimization. With the halogen lamp on,
dark current correction and optimization are performed with the probe
facing the white reference panel to collect instrument noise and opti-
mize integration time, respectively. These operations were done auto-
matically by the instrument. For each rice leaf, three reflectance spectra
were obtained from the adaxial surface at the 1/3, 1/2, and 2/3 dis-
tance from the base, respectively. The main veins of rice leaves were ex-
cluded from the chamber of leaf clip during spectral collection. All spec-
tra collected from the same leaf were averaged to represent the mean
reflectance of this leaf and to minimize the random error during mea-
surements.

2.2.2. Measurements of leaf biochemical variables

To illustrate the biochemical alterations against the fungal invader,
four parameters chlorophyll (C,.p), carotenoid (Cyi.), anthocyanin
(Cqnp) and water contents (C,,) were obtained after spectral measure-
ments on the same infected and healthy leaves across the two years.
Casb was determined
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non-destructively using a Dualex device (Dualex Scientific+, Force-A,
Orsay, France). The mean value of three Dualex readings taken from
the 1/3, 1/2, and 2/3 distance from the leaf base was considered
to be the final measurement. The Cy ., Cqnn and C,, were estimated
from reflectance spectra using the PROCWT model, which couples the
PROSPECT-D model (Féret et al., 2017) and continuous wavelet trans-
form (CWT) and was proposed in our recent work (Li et al., 2018).
The PROCWT method has advantages of improving the retrieval of leaf
biochemical parameters by reducing the specular reflection effect and
enhancing the absorption features of chemical constituents. Addition-
ally, the accuracy of PROCWT for rice biochemical contents has been
recently validated using laboratory measured leaf chemistry (Li et al.,
2018). Therefore, it is well suited for retrieving biochemical contents at
high accuracies from bidirectional reflection factor spectra, where were
collected with leaf clips as used in this study. To alleviate the ill-posed
problems of model inversion, the possible parameter ranges were set
according to prior information provided by our previous research. De-
tails about the setup of nominal values and ranges of parameters for
PROCWT inversion can be found in Table S2.

2.3. Disease detection methodology

The disease detection methodology was developed based on the hy-
perspectral and biochemical measurements collected from 26 pairs of
identical samples and 45 pairs of different samples over various DAIs of
two years. The detection of RLB infection at different stages comprised
three main modules: data preparation, feature selection, and leaf classi-
fication (Fig. 2).

The significance in the difference of leaf biochemical parameters be-
tween the two classes (healthy vs. infected) over different DAIs were
assessed using statistical test analysis (Table S3). For each biochemi-
cal parameter from the same DAI in the datasets of 2018, a paired Stu-
dent's t-test (Hp: Infected = Healthy; Ha: Infected # Healthy; p < 0.05)
was performed under normal distribution and a Wilcoxon test under
non-normal distribution. In order to evaluate the significant difference
in leaf biochemistry between healthy and infected leaves in 2019, an
independent t-test (Hy: Infected = Healthy; Ha: Infected # Healthy;
p < 0.05) was applied for samples with uniform variance and normal
distribution. The samples that did not meet the requirements were eval-
uated using a Mann-Whitney U test. All outliers were determined using
an interval spanning over the median minus/plus three standard devia-
tions and eliminated before the statistical significance analysis (Leys et
al., 2013). The samples with a significant difference in any of the four
biochemical parameters were retained for the extraction of DSSFs.

A large number of narrow-band spectral indicators were generated
as the candidate features for extracting the DSSFs sensitive to RLB in-
fection, including reflectance bands, SIs (Table S4), and wavelet coef-
ficients. A total of 97 SlIs of five categories (Table S4) selected from
the literature were calculated as the candidates for feature selection.
Given the limitation of band number in SIs, the potential of hyper-
spectral data could not be fully exploited. Therefore, full-band spec-
tral information was also included to explore the subtle spectral vari-
ations caused by RLB infection. In addition to selecting features from
the reflectance bands, we also performed continuous wavelet trans-
form on the spectra. Sensitive wavelet features
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Hyperspectral and biochemical datasets collected

from healthy and infected leaves
—
— Class generation: healthy vs. infected

> _26 pairs of identical leaves over various DAIs (2018)
7‘_}: 45 pairs of different leaves over various DAIs (2019) .

1. Data preparation
Statistical analysis
» Chlorophyll » Anthocyanin
¥ Carotenoid » Water

Spectral processing
» Spectral index calculation
» Continuous wavelet transform
-

2. Feature selection

Reflectance Spectral indices Wavelet
bands P coefficients
L Assessment of spectral
separability 1
Thresholdi Feature Reduction of feature
Fesoing sets sets by ranking
¥
Collinearity
reduction
¥

Disease-specific spectral features

-

3. Classification

ML-based feature selection algorithm
» SVM-SFFS
» k-NN-SFFS
» LDA-SFFS
Evaluation of classification performance
» Optimal feature combination (OFC)
> Overall accuracy (OA)
-

The ML-SFFS methodology for spectroscopic
detection of early RLB infection

Fig. 2. Schematic illustration of ML-based SFFS classification methodology for the spec-
troscopic detection of rice blast.

were further extracted from wavelet coefficients over various scales.

When performing continuous wavelet transform (CWT), the re-
flectance spectrum was converted to sets of coefficients using a mother
wavelet basis function. With CWT, each one-dimensional input re-
flectance spectrum was decomposed into a number of two-dimensional
wavelet coefficient spectra by calculating the inner products of the
scaled and shifted wavelet and the input spectrum. Each wavelet coef-
ficient or wavelet feature is a function of wavelength and scale (dyadic
numbers 21, 22, 23 ... 28 were denoted as Scale 1, Scale 2, Scale 3,
..., Scale 8 for simplicity) and its amplitude is represented by wavelet
power. Each scale component of wavelet coefficient is of the same length
as the reflectance spectrum. Following Cheng et al. (2010), the second
derivative of Gaussian function (Mexican Hat wavelet) was used as the
mother wavelet basis and only the wavelet coefficients at Scales 3 to 8
were retained for feature extraction. CWT operations were performed in
the IDL8.3 Wavelet Toolkit (Exelis Visual Information Solutions, Boul-
der, CO, USA).
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A large number of redundant features of hyperspectral data were
reduced by extracting the consistent feature subsets, which are highly
related to RLB infection. The separability of spectral features between
infected and healthy leaves can be determined through the threshold-
ing technique (Mahlein et al., 2013). For a specific spectral feature,
the mean values of the infected (M;) and healthy (Mj) samples were
separately calculated and the distance between M; and Mj, was divided
equally into 100 proportions. Finally, the optimal threshold was defined
as the one with the highest classification accuracy among the 100 values
(Fig. 3). The separability assessment was applied to all spectral features
individually.

After clarifying the separability of each spectral feature, the con-
sistent sensitive features over different DAIs were extracted. For re-
flectance bands and wavelet features, separability scalograms were gen-
erated according to Cheng et al. (2010) for visualizing the distribu-
tion of extracted spectral features. Unlike the correlation measure used
in Cheng et al. (2010), the separability was used in this study since
it matched our purpose of detecting infected samples. Each separability
scalograms reports the classification accuracy from 0 to 100% at each
wavelength (and scale for wavelet features). The features displaying the
highest classification accuracies at the separability scalograms for each
DAI were retained as the sensitive features with a cut-off percentage
threshold (top 5%). Then the intersection of the retained sensitive fea-
tures was determined to extract the common features. Only one repre-
sentative feature with the highest separability within each common fea-
ture region was retained to extract the common DSSFs. After the fea-
ture extraction operations, a multivariate pool of disease-related spectral
indicators comprising a smaller number of reflectance bands, SIs, and
wavelet coefficients, were generated as input variables for the disease
detection methodology.

The SFFS is a bottom-up search procedure proposed by Pudil et al.
(1994) to overcome the problems of computational complexity and to
guarantee the optimality of the selected features. The machine learn-
ing classification algorithm was integrated into the feature selection
model as the criterion function in ML-SFFS methodology (Huang et
al., 2019; Kempeneers et al., 2004). Before the classification op-
eration with ML-SFFS, the collinearity of features in the DSSF pool
was reduced by the variance inflation factor (VIF) analysis. The fea-
tures with VIF values less than 10 will be retained and used as the

input variables of the ML-SFFS algorithm. Specifically,
0.075
°
® Infected
ubds ¢ o . ® Healthy
°
o ®
g o
S 0.055 | .
& ® - [ M,
® Optimal threshold value
¢ /
0.045 o o o____ o_ 8 _ _______ b ____ o __ % __
* ® . °_ o o ._._ oo
o T TR,
s °® .—i.—.—.——.—t.-.'. o My
0.035 . . . d
0 13 26 39 52

Sample identification number

Fig. 3. A conceptual diagram of evaluating the separability of a specific feature (re-
flectance at 673 nm in DAI 21 in 2018) based on the thresholding technique. The M; and
My, represents the mean values of the infected and healthy samples, respectively.
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there are three major steps for the ML-SFFS algorithm. Firstly, the most
significant features were selected from the input variables to form the
feature subset according to the accuracy of the selected features. Sec-
ondly, the least significant feature from the generated feature subset was
identified. And it would be removed unless it was selected at the first
step. Lastly, elimination of the least significant feature was then contin-
uously conducted to see if the OA can be improved at that level. Eventu-
ally, the OFC with the highest classification accuracy could be selected
by the SFFS algorithm. By means of conditional inclusion and exclusion,
this algorithm allowed for correcting wrong decisions made in the pre-
vious process so as to approximate the optimal solution as much as pos-
sible (Pudil et al., 1994).

Three widely used machine learning classification algorithms LDA,
k-NN, and SVM were determined as criterion function to guide the fea-
ture selection processes. The LDA, also known as Fisher discriminant
(Fisher, 1936), is a discriminant method to search for the optimal pro-
jections using the separability between classes (Kempeneers et al.,
2004). It assumes that different class variables are normally distributed.
Since there are only two classes (infected and healthy), the selected fea-
ture set was projected into a one-dimensional space. k-NN is a non-para-
metric classification method that classifies the unlabeled samples by an-
alyzing its k-nearest neighbors with class labels. The classification per-
formance of k-NN depends significantly on prior knowledge and the
metric for calculating the distances between k samples (Weinberger et
al., 2009). Specifically, we used the Minkowski distance between three
samples to determine the attribution of samples to be classified. SVM
is a non-parametric supervised classifier which reduces the misclassifi-
cation errors on training data by minimizing structural risk strategies.
It was originally designed for two-group classification problems by con-
structing an optimal separating hyperplane to maximizes the margin be-
tween classes with a small number of support vectors (training samples).
Compared with k-NN and LDA, SVM is a soft classification strategy with
stronger generalization ability and better robustness (Cortes and Vap-
nik, 1995; Pal and Foody, 2010; Wei et al., 2017). A free library
(LibSVM) with radial basis function (RBF) was used in our work to per-
form the SVM classification task (Chang and Lin, 2011). We use a grid
search strategy to determine the model parameters C andy, which are
the spread of the RBF kernel and the regularization parameter, respec-
tively.

A 4-fold cross-validation was conducted with 100 repetitions for
each ML-SFFS (LDA-SFFS, k-NN-SFFS, SVM-SFFS) classification algo-
rithm. The average of optimal classification accuracies over the 100 rep-
etitions was determined as the OA. Meanwhile, the most frequently se-
lected OFC among the 100 repetitions was retained. The performance of
this ML-SFFS methodology was evaluated through OA for the separation
of infected and healthy samples at various infection stages. All classifi-
cations were performed in the R environment (Version 4.0.1; R Develop-
ment Core Team). We performed the LDA, k-NN and SVM classifications
using the packages “caret”(Kuhn et al., 2020), “kknn”(Schliep et al.,
2016) and “el071”(Meyer et al., 2020) in R, respectively.

3. Results
3.1. Leaf biochemical variation over various days after inoculation

Fig. 4 shows the temporal variations in leaf biochemistry over
different DAIs during the years of 2018 and 2019. Signifi-
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Fig. 4. Comparison of leaf biochemical parameters between the infected and healthy leaves (A, B: chlorophyll content, C, D: carotenoid content, E, F: anthocyanin content, G, H: water
content) measured in the datasets of 2018 (left column) and 2019 (right column) on various DAIs. In each boxplot, the top edge, black line, and the bottom edge of the box represent the
upper (Q3), median (Q2), and lower (Q1) quartiles, respectively. The whiskers represent the maximum (Q3 + 1.5*IQR) and minimum (Q1-1.5*IQR) valid values defined by interquartile
ranges (IQR = Q3-Q1), respectively. The circles and dots outside the boxplot represent outliers and extreme outliers, respectively. The vertical solid lines in black denote the first day
when visible disease spots appeared on infected leaves. The red asterisk marks at the top of the pairs of boxplots represent the significant differences in the biochemical variables between
healthy and infected samples. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

cant differences regarding biochemical parameters between infected and
healthy leaves were observed at different infection stages in both years.
Note that the sampling DAIs with no significant differences in bio-
chemical parameters would have been discarded in subsequent spec-
tral analysis. Compared with healthy ones, infected leaves exhibited sig-
nificant decreases in total chlorophyll, carotenoid, and water contents,
and a contradictory trend in anthocyanin content. The first significant

deficit in the chlorophyll and carotenoid contents of the infected leaves
occurred on DAI 5 and 7, respectively. These biochemical variations
were prior to the appearance of disease spots on most of the tested
leaves at the early infection stage in both years (Fig. 5). Significant
differences in anthocyanin and water contents were absent at the early
infection stage. The critical photosynthetic pigments (chlorophyll and
carotenoid) were most sensitive to the early infection of RLB disease in
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Fig. 5. Spatiotemporal dynamics of RLB disease lesions on the rice leaves from asymptomatic (a-b) to the early infection stage (c-e) of 2018. The red arrow points to the watery disease
lesion. The black line cross the leaf is the fine wire made of plastic that was used to fasten the leaf for taking pictures. (For interpretation of the references to colour in this figure legend,

the reader is referred to the web version of this article.)

both years, but the response of water and anthocyanin contents lagged
behind. Note that the development of disease lesions on the leaves in
the greenhouse was relatively slow due to the resistance of rice varieties
and environmental factors. In addition, continuous visual inspection re-
vealed that the lesions remained stagnant after reaching a certain mor-
phology and rarely caused the death of the entire leaf.

3.2. Selection of disease-specific spectral features (DSSFs) based on spectral
separability

The classification scalograms produced with the reflectance data
collected in 2018 and 2019 are displayed in Fig. 6. The

a. DAL 5 (2018)

individual bands highly sensitive to RLB infection from the asympto-
matic to early infection stages of 2018 were observed mostly in the VIS
(400-700 nm) and a SWIR (1850-2450 nm) region (Fig. 6a-e). Specifi-
cally, the individual bands located near the red region were consistently
found from DAI 7 to 21 and the SWIR bands located near the water ab-
sorption center (1945 nm) could be observed from DAI 12 to 21. Fig.
6f-k displays the highly sensitive individual bands to RLB infection from
the early to mild infection stages of 2019, which are mainly observed in
the VIS region. Several spectral bands located in the red region were de-
termined consistently throughout all DAIs. On the contrary, the sensitive
SWIR bands could only be observed for late DAIs at the mild infection
stage.
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Fig. 6. Classification scalograms derived with reflectance spectra of the leaves collected from DAI 5 to 21 in 2018 (a-e) and DAI 8 to 35 in 2019 (f-k), as well as the intersection of sensitive
bands determined from the individual datasets of 2018 (1) and 2019 (m), and both of them (n). The X-axis is the spectral wavebands from 350 to 2500 nm. The grayscale brightness
of a scalogram represents the magnitude of classification accuracy (The stronger the brightness, the higher the classification accuracy). The patches in colour in a-k represent the most
sensitive features that produced the top 5% highest accuracies among all features from the scalogram. The patches in red in 1-n represent the intersection of the most sensitive features.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Common sensitive bands were determined from the datasets of 2018
(Fig. 61), 2019 (Fig. 6m), and both of them (Fig. 6n). For the inter-
section of sensitive features from different DAIs, the individual bands
selected from the early infection stage in 2018 (Fig. 61) aligned per-
fectly with those of 2019 (Fig. 6m). The sensitive bands near 1945 nm
were not overlapping but appeared on several DAIs at the early infec-
tion stage of 2018 (Fig. 6c-e) and the mild infection stage of 2019
(Fig. 6j-k). Therefore, several consistent individual bands located at the
chlorophyll absorption center (near 673 nm) and the water absorption
center (1945 nm) were selected from different DAIs in both years. The
former is highly associate with the chlorophyll content and is generally
used for detecting the chlorophyll content while the latter is highly re-
lated to water absorption.

Out of the 97 SIs (Table S4), ten were determined as the most sen-
sitive to RLB infection for 2018 and 2019 (Table 1). Six of them were
common to both datasets, namely CCI, PSSRa, PSNDc, PRI, SRPI, and
HI_2013. The chlorophyll-related indices accounted for the largest pro-
portion (4 out of 10 in 2018 and 7 out of 10 in 2019), followed by
carotenoid-related indices (4 out of 10 in 2018 and 4 out of 10 in 2019).
Two water-related (NDWI and WI) and two health-related (HI_2014 and
HI_2013) indices were selected for 2018 but only HI 2013 for 2019. On
the contrary, the anthocyanin-related index (ARI) and xanthophyll-re-
lated index (PRI) was selected only in 2019. All of the band combina-
tions comprising the selected SIs were located in the VNIR region, ex-
cept for the 1240 nm band for NDWI.

Most of the SIs common to both years were highly sensitive to
chlorophyll or carotenoid content, or both of them. The chlorophyll/
carotenoid index (CCI) that is sensitive to the ratio of chlorophyll to
carotenoid content performed best in 2018. The three simple ratio SIs
(PSSRa, PSNDc, and SRPI) which are highly related to chlorophyll con-
tent share a similar spectral band near 650-680 nm. By contrast, only
one carotenoid-related index (PRI;,) was selected for both years. Fur-
thermore, the plant health-related index (HI_2013) derived for identi-
fying sugar beet diseases also showed good separability among healthy
and infected leaves.

Fig. 7 shows the classification scalograms derived with wavelet co-
efficients in 2018 and 2019 datasets. Fig. 7a-e highlights the wavelet
features strongly sensitive to RLB infection from the asymptomatic stage
to the early infection stage of 2018. Consistent features can be observed
in the VNIR (400-

Table 1
List of the most sensitive SIs producing the top 10 highest classification accuracies for the
separation of infected and healthy leaves in 2018 and 2019, respectively.

Rank Top 10 VIs for 2018 Top 10 VIs for 2019
1 ccrx PRI0*

2 HI_ 2014 HI_ 2013*
3 NDWI SRPI*

4 WI CCI*

5 PRI, PRI X CI
6 PSSRa* PRI

7 PSNDa* ARI

8 PRI0* PSSRb

9 SRPI* PSSRa*
10 HI_2013* PSNDa*

Note: The asterisk marks the sensitive VIs common to two years.

Remote Sensing of Environment xxx (Xxxx) XXX-XXX

1050 nm) and SWIR (1850-2450 nm) regions at the scales of 3 to 8 from
DAI 12 to 21. The sensitive features within the SWIR region became con-
centrated and obvious gradually. Most of the sensitive features occurred
at scales of 3 to 6 except for those located in the red edge region, which
was present at all scales examined.

The classification scalograms produced with the wavelet coefficients
of 2019 are displayed in Fig. 7f-k. The wavelet features sensitive to the
RLB infection from the early infection to mild infection stages in 2019
mainly covered the VNIR region at scales of 3 to 7. Several sensitive fea-
tures concentrated in the yellow edge region (550-650 nm) at the scales
of 4 and 5 were consistently observed on all sampling days. In addi-
tion, consistent sensitive features were observed in the NIR region at the
scales of 4 to 6 from DAI 16 to 35. Sensitive features that occurred in
the red edge region in 2019 were located at shorter wavelengths than
those in 2018 and were only observed at the early infection stage (DAI 8
to 16). For the SWIR region, sparse features were identified at the mild
infection stage (DAI 27 and 35). Therefore, only the leaves from the last
DAI 3 and 4 in 2018 and 2019 were involved to extract common fea-
tures.

Fig. 7l-n displays the overlapping sensitive wavelet features ex-
tracted from 2018 (Fig. 71), 2019 (Fig. 7m), and both years (Fig.
7n). The common wavelet features sensitive to RLB infection for both
years mainly formed three intervals in the 550-1000 nm range. Only
one common wavelet feature (WFgqg5) located in the yellow edge region
(550-650 nm), which is mainly dominated by the overlapping absorp-
tion of several pigments (particularly chlorophyll and anthocyanin), was
defined as the optimal wavelet features for the detection of RLB infec-
tion. Moreover, two overlapping features (WFgsg 4 & WFgee5,) located
near 850 nm in the NIR region were consistently found to be the optimal
wavelet feature from the early to mild infection stage. The sensitive fea-
tures occurred in the NIR region are generally considered to be closely
related to the leaf internal structure. Another two common wavelet fea-
ture (WFg3g 5 & WFog 6) located near 950 nm, whose reflectance is dom-
inated by both the water absorption centered at 970 nm and the leaf
internal structure, were also consistently found for all DAIs over both
years. However, sensitive features that span multiple scales occurred in
the red edge region (700-750 nm) and the right shoulder of the water
absorption center (near 1980 nm) were only obtained from 2018.

3.3. Detection of RLB infection using ML-SFFS classification techniques

The OFCs and the corresponding classification accuracy generated
by feeding the selected features, which were retained by performing
VIF analysis on the DSSFs in Table 2, to each ML-SFFS classification
technique are listed in Table 3. For each DAI the mean classification
accuracy obtained by SVM-SFFS was consistently higher than that by
LDA-SFFS or k-NN-SFFS. This superiority was highly significant over
LDA-SFFS for the asymptomatic stage of 2018, and over k-NN-SFFS for
2018 and the early infection stage of 2019. LDA-SFFS performed sig-
nificantly better than k-NN-SFFS for the early infection stage of 2018
and DAI 8 of 2019 but was evenly matched with k-NN-SFFS for the rest
DAL The performance of both LDA-SFFS and k-NN-SFFS was capped by
SVM-SFFS for all DAIs. The maximum classification accuracies obtained
by SVM-SFFS were over 80% and 83% for the early infection stage of
2018 and 2019, respectively. It rose to 98.65% for the mild infection
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Fig. 7. Classification scalograms derived with wavelet coefficients of the leaves collected from DAI 5 to 21 in 2018 (a-e) and from DAI 8 to 35 in 2019 (f-k), as well as the intersected
features, extracted from 2018 (1) and 2019 (m), and both of them (n). The X-axis is the spectral wavebands from 350 to 2500 nm, and Y-axis represents the third to eighth wavelet scale.
The grayscale brightness of a scalogram represents the magnitude of classification accuracy (The stronger the brightness, the higher the classification accuracy). The patches in colour in
a-k represent the most sensitive wavelet features that produced the top 5% highest accuracies among all features from the scalogram. The patches in red in I-n represent the intersection
of the most sensitive features. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

stage of 2019. Compared with the SVM classification accuracies ob-
tained using all DSSFs, the SVM-SFFS classification accuracies were over
10% higher for DAI 5, 7 and 12 of 2018 and approximately 5% higher
for DAI 17 and 21 of 2018 and DAI 8 and 11 of 2019. However, the su-
periority was insignificantly for the mild infection stage of 2019 (Fig.
8).

Concerning the OFC, two to four features were retained after the
SFFS procedure for each classifier and each DAI (Table 3). This num-
ber was far less than the total feature number (21) of the multivari-
ate pool in Table 2. For each DAI the three-
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feature OFCs appeared most frequently among all classification results,
while two-feature and four-feature OFCs were more likely to be ob-
served in the results obtained by LDA-SFFS and SVM-SFFS, respectively.
Additionally, no significant collinearity could be observed among the
features contained in each OFC. Although the OFCs selected by each
procedure were not exactly the same across different DAIs, some fea-
tures appeared frequently in different OFCs. For example, F6 (WFg3s 5)
for SVM-SFFS occurred more frequently in all DAIs than other features.
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Table 2
A summary of the selected disease-specific spectral features (DSSFs).

Feature Spectral
Feature type code feature
Spectral band F1 Re73

F2 Ri945
Wavelet coefficient F3 WFgs0,4

F4 WFeos,5

F5 WFse6,5

F6 WFo36,5

F7 WFos0,6
Spectral index F8 CCI

F9 HI 2014

F10 NDWI

F11 WI

F12 PRI,

F13 PSSRa

F14 PSNDa

F15 PRI

F16 HI_2013

F17 SRPI

F18 PRI x CI

F19 PRI

F20 ARI

F21 PSSRb

4. Discussion
4.1. Physiological interpretation of the sensitive spectral features

Given that the variation of various plant physiological parameters
could induce strong responses in specific spectral ranges, the unbalance
of the spectral features selected from the VNIR and SWIR range could
be attributed to the sensitivity of different physiological parameters to
disease infection. A recent study conducted by Zhang et al. (2019)
also confirms that the VNIR spectral features were most frequently used
in the detection of plant diseases and pests. The sensitivity of spectral
features in the VNIR region was linked to leaf internal structure and
rapid degradations and biosynthesis of pigments, including chlorophyll,
carotenoids, and anthocyanin (Jacquemoud et al., 2009; Ustin et
al., 2009). Our results suggest that the significant variations in pig-
ment contents of infected leaves resulted from the passive (for chloro-
phyll, carotenoid) and active (for anthocyanin) responses of plants to the
RLB infection (Fig. 4). Moreover, continuous measurements at differ-
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ent DAIs (DAI 6 in 2018 and DAI 8 in 2019) over two years support the
reliability and reproducibility of findings on the biochemical analysis.
The consistent and rapid response of these pigment contents to disease
infections directly leads to the selection of a large number of spectral
features in the VNIR region. On the contrary, the lagged response of wa-
ter content to the RLB infection is the main explanation that only scat-
tered spectral features were captured in the SWIR region for late sam-
pling DAIs. It could probably be explained by the late occurrence of wa-
ter stress induced by RLB infection. This speculation is supported by the
significant differences in water content only for late DAIs (Fig. 4 G-H).

Further analysis of the sensitive features could provide a deeper un-
derstanding of the spectroscopic detection of RLB. Specifically, the iden-
tified sensitive individual band Rg73 coincided with the chlorophyll ab-
sorption center, which means that changes in chlorophyll content caused
by RLB infection could be captured directly with this band. The wavelet
feature (WFqy 5) characterized the change in the local spectral shape of
the yellow region 550-650 nm, which is mainly dominated by the over-
lapping absorption of several pigments, particularly chlorophyll and an-
thocyanin (Féret et al., 2017). As for the occurrence of a large pro-
portion of chlorophyll and carotenoid-related SIs (CCI, SRPI, HI 2013,
PSSRa, PSNDc, and PRI,;5) could be attributed to the high sensitivity
of these two pigment molecules to RLB infection. The superior perfor-
mance of the CCI and SRPI, which are found to be highly sensitive to
both chlorophyll and carotenoid in the literature (Gamon et al., 2016;
Penuelas et al., 1995), implies that the combination of multiple visible
bands holds the potential to improve the spectral separability. Similar
operations have been applied by Mahlein et al. (2013) and Huang et
al. (2014) to develop sensitive SIs (HI_2013 and HI 2014) for discrim-
ination between different diseases, respectively. The considerable spec-
tral separability of infected from healthy leaves with HI 2013 indicates
that the infection of different diseases may induce similar physiological
responses from plants. The remaining SIs (PSSRa, PSNDc, and PRI;;»)
sensitive to only a specific pigment were also found to be sufficient to
detect the pigment variation induced by RLB infection. This could be
explained by the strong correlation between chlorophyll and carotenoid
contents in crop leaves (Feret et al., 2011).

Unlike the early responses of pigment-related SIs, the absence of
sensitive features in the SWIR region at early infection stage is con-
sistent with the lack of statistical difference in water content between
infected and healthy samples. A recent study by Wahabzada et al.

(2015) demonstrated that the loss
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Fig. 8. Comparison of SVM classification accuracies between with (SVM-SFES) and without (SVM-all) the SFFS procedure for the datasets of 2018 (A) and 2019 (B).
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Table 3
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Assessment of the ML-SFFS techniques in OA for classifying healthy and infected samples by 4-fold cross-validation with 100 replications.

Healthy
vs Infection
infected stage DAI LDA k-NN (k = 3) SVM
Optimal feature Mean Optimal feature Mean Optimal feature Mean
combination accuracy combination accuracy combination accuracy
2018 Asymptomatic 5 F2, F7 60.58% F2, F4, F9 58.83% F7, F8, F9 67.67%
7 F6, F9, F17 60.33% F7, F9 61.67% F3, F6, F9 69.58%
Early 12 F4, F6, F8 75.75% F6, F11, F19 71.17% F6, F8, F12 80.08%
17 F1, F8, F12 80.25% F6, F7 68.25% F1, F2, F8, F12 81.25%
21 F2, F4, F5 81.33% F2, F4, F21 70.33% F2, F4, F5 83.25%
2019 Early 8 F5, F7, F18 81.91% F1, F8, F12 72.09% F5, F6, F17, F18 83.32%
12 F2, F3, F6, F17 89.05% F2, F3, F6, F17 87.45% F2, F6, F17 92.00%
16 F3, F21 90.73% F2, F3, F21 87.50% F2, F6, F9, F21 95.77%
Mild 20 F4, F5 93.50% F5, F7, F18 92.73% F5, F17 95.08%
27 F4, F5, F10 93.05% F3, F4, F10 95.32% F3, F4, F5, F9 98.65%
35 F10, F18 96.55% F3, F6, F10 94.82% F3, F6, F10 98.65%

Note: The best performance for each DAI is highlighted in bold.

of water occurred only at later infection stage during rust pathogen-
esis on barley, which is highly consistent with our results on water
variation induced by RLB infection. However, a previous study has
demonstrated that the significant deficit in water content could be ob-
served during the fungus infection caused by the mountain pine bee-
tle (MBP) at the green attack stage (Cheng et al., 2010). This con-
tradictory finding may be due to the biological processes in the patho-
genesis that varied considerably under different biotic stresses. For ex-
ample, the water-conducting xylems were blocked through the MBP in-
fection, which seriously affects the water transport system of the host
trees (Solheim, 1995; Yamaoka et al., 1990). For the Magnaporthe
oryzae infection in this research, the interactions between the pathogen
and host may inhibit various biochemical processes in cells (e.g. pig-
ment synthesis) (Ulferts et al., 2015). This suggests that the leaf wa-
ter content may not be significantly affected in a short period due to
the powerful water delivery system of rice .The underlying physiologi-
cal mechanism of specific disease stress is crucial for understanding how
pathogens infect the leaves and the reason for the determination of sen-
sitive spectral features. Relevant studies have examined the biochemi-
cal variations during the disease infection process to guide the deter-
mination of disease-specific features (Cheng et al., 2010; Zarco-Te-
jada et al., 2018). Therefore, the determination and interpretation of
sensitive spectral features during plant pathogenesis could be linked to
physiological analysis. The lagged response of anthocyanin and water
content, which are key probes for detecting multiple disease stresses
(Cheng et al., 2010; Morel et al., 2018), suggests that the traditional
approaches based on these indicators may be insufficient for the early
detection of RLB infection. On the contrary, particular attention could be
paid to the utilization of the chlorophyll and carotenoid-sensitive indi-
cators. To the best of our knowledge, this study represents the first leaf-
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level report on revealing the physiological and spectral responses of rice
plants to the disease with intensive samplings over the time course of
RLB infection.

4.2. Importance of the near-infrared domain for disease detection

Several significant and consistent wavelet features detected in the
NIR (750-1000 nm) region indicates that the internal structure of leaves
may change during plant-pathogen interactions. Micrographs of RLB
mycelia interacting with rice cells at early (Fig. 9A) and mild (Fig.
9B) infection stages could be used to illustrate the damage of RLB
pathogen to leaf cellular structure. This could provide a straightfor-
ward understanding of the effects of the pathogen on the leaf inter-
nal structure. When rice tissues are subjected to fungus infestation, the
leaf epidermal cells are commonly destroyed to facilitate the invasion
of mycelium into the leaf (Fig. 9A). Then the movement of the fungus
from cell-to-cell occurred by means of penetrating the barriers among
cells (Fig. 9B) (Wilson and Talbot, 2009). The collapse of physi-
cal structure among cells during this process may be the main factor
leading to spectral variation in the NIR region, because the leaf opti-
cal properties in this region are primarily governed by the intercellu-
lar leaf structure (Jacquemoud and Féret, 1990; Ollinger, 2011).
According to the research by Morel et al. (2018), some heterogene-
ity will be introduced to the internal structure of the leaves when
the inter-cellular space is penetrated by fungus. However, their result
was obtained by simulating the leaf internal structure parameter (N)
through the PROCOSIN model and lacked convincing support from ex-
perimental measurements. The microscopic analysis of cell-pathogen
interaction in this study provides solid evidence to support the fact
that the fungus infestation can result in the collapse of the intercel-
lular structure. Readers are referred to Li et al. (2020c) for more
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Fig. 9. Micrograph of RB mycelia (denoted by red arrows) interacting with rice cells at the early (A) and mild (B) infection stages, respectively. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of this article.)

experiment details about conidia invasive growth on rice tissue.

Four consistent wavelet features with considerable separability
among infected and healthy samples were near 850 nm (WFgs 4,
WFge6,5) and 950 nm (WFg36 5, WFog0 6), Which characterized the sub-
tle variation of local spectral slope in the NIR region. The overall re-
flectance slope in the NIR region (760-900 nm) of the infected leaves
increased relative to that of the healthy leaves, which is more obvi-
ous in the dataset of 2019 (Fig. 10). This finding is in agreement with
our previous research on the identification of RLB lesions based on
close-range hyperspectral images (Tian et al., 2018). Although the
slope variation in the NIR region (760-900 nm) is almost impercepti-
ble, the subtle variation in this range induced by RLB infection is consis-
tently captured by the wavelet features WFgsg 4 and WFggg 5. The other
two wavelet features WFo365 and WFog ¢ carried information on lo-
cal spectral variation over a NIR region (900-1000 nm) that is mainly
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dominated by both the water absorption centered at 970 nm and the
leaf internal structure (Cheng et al., 2014; Jacquemoud and Féret,
1990; Penuelas et al., 1997). Therefore, the spectral variation over
this NIR region was enhanced by the mixed impacts of the destruction of
the mesophyll cell structure and the deficit of water content due to RLB
infection. A similar wavelet feature (WFgs 4) was also derived by Cheng
et al. (2010) to distinguish control and infested trees at the green at-
tack stage following a significant water deficit. This study represents the
first report that emphasizes the potential of the subtle spectral variation
in the NIR region for revealing the complex plant internal structure al-
terations induced by RLB infection.

Among the three spectral analytical approaches, only wavelet analy-
sis captured the subtle variation of spectral shape in the NIR region.
Several disease specific spectral indices were developed by Mahlein
et al. (2013) and Huang et al. (2014) for the detection of crop
diseases using feature selec-
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Fig. 10. Comparison of mean reflectance in the NIR region (760-1000 nm) between infected and healthy samples from datasets of (A) 2018 and (B) 2019.
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tion algorithms. However, those studies only identified the sensitive
bands in the region of 400-750 nm and their methods are still insuffi-
cient to distinguish infected samples at early stages. Although the merits
of CWA in quantifying the disease severity of plant diseases have been
investigated in a few studies (Cheng et al., 2010; Shi et al., 2018a;
Zhang et al., 2014), the variation of local spectral shape in the NIR
region remains insufficiently mined in the existing literature due to the
complexity of its spectral response. The NIR region plays an important
role in detecting various plant pests and diseases (Zhang et al., 2019).
However, it was primarily used to construct SIs or as input features to
machine learning methods in the form of original reflectance values (De
Castro et al., 2015; Liu et al., 2019a). Our results demonstrated that
the unique subtle disease information in the NIR region could be en-
hanced and fully exploited by performing the wavelet decomposition,
which greatly facilitates the detection of RLB induced subtle signals.

4.3. Advantages of using ML-SFFS classification models

The proposed ML-SFFS classification methodology goes beyond pre-
vious disease classification models by optimizing the combination of
sensitive features for improved performance. The pronounced increase
in OA with DAI suggests that an OFC consisting of 2 to 4 features could
provide a higher OA than all DSSFs even with a lower computational
cost (Fig. 8). Although individual spectral features (De Castro et al.,
2015; Huang et al., 2014; Mahlein et al., 2013; Penuelas et al.,
1995; Shi et al., 2018b) and ML (Badnakhe et al., 2018; Feng et
al., 2020; Rumpf et al., 2010)have been used in previous studies for
the detection of plant disease with promising results, the unambiguous
separation of infected samples is challenging at the early infection stage
due to comparatively low spectral changes in reflectance spectra (Cheng
et al., 2010; Mahlein et al., 2013). On the other hand, most previous
studies employed complex classification strategies for disease detection
and had only a few attempts to optimize the OFC for improved classifica-
tion performance (Al-Saddik et al., 2018; Hornero et al., 2020; Liu
et al., 2019a; Rumpf et al., 2010; Shi et al., 2018a; Zarco-Tejada
et al., 2018). By optimizing the combination of sensitive features, the
weak spectral signal to disease stress at the early infection stage could be
effectively enhanced. Additionally, the ML-SFFS methodology has con-
siderable advantages regarding the computational efficiency over the
physical-based RTMs. Feature extraction and selection from hyperspec-
tral data can greatly improve computational efficiency and highlight the
important features for the construction of classification methodology.
Several studies have emphasized the limitation of computational time
required for model inversion, which restricts the large-scale applicabil-
ity of the RTMs in disease detection(Hornero et al., 2020; Rivera et
al., 2015). On the contrary, feature selection algorithms have proved to
be an effective strategy to retaining useful information while decreasing
the computational time (Huang et al., 2019; Kaushal and Swarnajy-
oti, 2018). The application of the VIF analysis and ML-SFFS algorithm
in this study allowed not only the reduction of collinearity among pre-
dictor variables, but also the relief of computational burden.

Another strength of the ML-based classification methodology is to
ensure the rationality and interpretability of the OFCs selected from
DSSFs by the SFFS procedure. For example, the features selected from
the reflectance data may perform well
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but could be case-specific and lack interpretability. However, all the
OFCs selected from DSSFs were directly linked to the RLB infection and
the corresponding physiological and morphological variations occurring
to infected leaves, which permits the transferability and generalization
of this methodology to other conditions (Zarco-Tejada et al., 2018).
Generally, multiple features related to several plant traits were involved
in an OFC, which better reveals the complex physiological processes as-
sociated with RLB infection. Note that the OFCs are inconsistent over
different DAIs and we cannot claim that a specific feature combination
is more significant in the differentiation of RLB infection. This inconsis-
tency could be attributed to the variation in spectral features respond-
ing to the physiological progression of RLB infection. Recently, the rel-
ative importance of sensitive spectral features for disease detection has
received attention in the literature (Poblete et al., 2020). By perform-
ing the DSSF selection and SFFS operation, the most informative features
were emphasized and the remainder were suppressed. Thus, a large
amount of less informative and redundant spectral features were filtered
out after these operations, which effectively balanced computational ef-
ficiency and spectral separability. Similar strategies have been applied to
reveal the most effective plant traits (Zarco-Tejada et al., 2018) and
to evaluate the contribution of different spectral indicators (Poblete et
al., 2020) in the detection of pre-visual symptoms of Xylella fastidiosa
infection.

4.4. Potential applications and limitations

The chlorophyll content (C,4p) and several DSSFs (Table 2) that
were characterized as the most effective and consistent proxies to reveal
RLB infection provide considerable transferability and potential applica-
tion for early detection of RLB infection to other datasets, rice species
and environmental conditions. One particular interest is the chlorophyll
content, which exhibited a considerable response to the occurrence of
RLB infection at the asymptomatic stage. Accurate estimation of leaf
chlorophyll content at various scales has been proved to be feasible in
recent studies (Gitelson and Solovchenko, 2017; Gitelson et al.,
2019; Li et al., 2020a; Xu et al., 2019), which facilitates the pos-
sibility to detect the subtle chlorophyll variation induced by RLB in-
fection. Moreover, the systematic influence of pathogen infestation on
the topmost layer could be amplified at the canopy level due to the
reabsorption between multiple leaf layers, which will provide support
for up-scaling application of the detection of RLB infection. Similarly,
several spectral features derived from the VNIR region also exhibited
promising applications on RLB detection for their potential link with
physiological effects induced by RLB infection, such as Rgy3, CCL, PRI,
PSSRa and PSNDa (Blackburn, 1998; Gamon et al., 2016; Gamon
et al., 1992). Additionally, other sensitive spectral features (e.g, SRPI
and HI_2013) have already demonstrated the superiority on the evalua-
tion and classification of various plant disease (Mahlein et al., 2013;
Penuelas et al., 1995).

Although the ML-SFFS methodology performs well in the classifi-
cation of RLB infected samples over various infection stages, the lim-
itations with the ambiguity of the sensitivity of sensitive features pre-
vent their potential application in the early detection of RLB using
multispectral sensors on different platform. Resent researches showed
that the relative importance of each input indicator may vary with
disease infection stage (Poblete et al., 2020; Zarco-Tejada et al.,
2018). Given that the sensitive features were all selected from hyper-
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spectral data, the demonstrated relative importance of sensitive features
may serve as a practical guide for the RLB detection when limited spec-
tral information is available. On the other hand, it could also provide
new insight into the complex plant-pathogen interactions to assess the
contribution of each sensitive indicators in the detection of RLB at vari-
ous infection stages.

5. Conclusions

This study demonstrated the combination of a few DSSFs enabled
the detection of RLB infection from the asymptomatic to mild infection
stages and the hyperspectral detection was well supported by physiolog-
ical variations. Non-destructive detection of RLB infection at an asymp-
tomatic and early stage would be of great significance to prevent a dev-
astating outbreak. Our work made full use of the abundant spectral in-
formation in the two-year datasets from three perspectives, including in-
dividual reflectance bands, SIs, and wavelet coefficients. A total of 21
DSSFs were consistently determined to be the most significant features
for revealing the occurrence of RLB infection. In addition, significant
biochemical variations occurred in both years during plant-pathogen in-
teractions and were physically linked to the selected DSSFs. While feed-
ing the selected DSSFs to the ML-SFFS classification methodology, the
OFC for each DAI was determined and the OA was greatly improved.
The encouraging classification accuracy of over 80% for the early in-
fection stage suggested the feasibility of consistent hyperspectral signals
in the non-destructive detection of RLB infection. The following conclu-
sions could be drawn from the results:

e We have illuminated the responses of leaf spectral and physiological
properties to RLB infection and determined the sensitivity of differ-
ent biochemical parameters across the RLB infection process. Specif-
ically, significant deficits in total chlorophyll, carotenoid, and water
contents were observed for infected leaves and a contradictory trend
in anthocyanin content. Compared with anthocyanin and water con-
tents, chlorophyll and carotenoid contents had a superior sensitivity
to the occurrence of RLB infection. Moreover, this pattern of variation
existed consistently during plant-pathogen interactions.

e Several DSSFs were defined to distinguish infected leaves from
healthy ones. Two reflectance bands, 14 VIs, and five wavelet feature
proved to be the most significant sensitive indicators to the differen-
tiation of infected leaves. More importantly, four wavelet features lo-
cated in the NIR region were first reported and could be interpreted
by intercellular structure collapse. In general, the selected DSSFs were
dominantly concentrated in the VNIR domain.

e The overall classification performance of the ML-SFFS methodology
was significantly improved by inputting the selected DSSFs instead of
all features. It was shown that the combination of two to four DSSFs
was sufficient to identify infected samples with OAs of over 66%, 80%
and 95% at the asymptomatic, early and mild infection stages, respec-
tively. Compared to the OAs obtained without feature selection, the
OA of SVM-SFFS was 10% higher for most DAIs of 2018 and margin-
ally different for 2019.

Future work could be focused on assessing the contribution of each
DSSF to the RLB infection detection, or developing more simplified
strategies (e.g., specific spectral index) for the detection over differ-
ent infection stages. When airborne or
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spaceborne hyperspectral data are available at sufficient spatial and
temporal resolutions the disease detection methodology has a consider-
able potential for the mapping of early occurrence and severity levels of
RLB infection or other cereal crop diseases at large scales.
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