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Abstract
We survey the current state of the art in industrial gas sensing, explaining how existing sensing
techniques estimate gas concentration, column density, total volume, and leak rate. We
especially focus on the application of snapshot infrared spectral imaging to gas detection and
quantification, as this is the newest of the available techniques. After discussing the strengths
and weaknesses of each measurement technique for deployment in autonomous sensing, we
explain how autonomous detection systems are important to improving sensing capabilities in
industrial facilities, and advancing the state of the art.
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1. Introduction

Two important challenges face the oil and gas industry: an
increasing number of explosions at industrial facilities caused
by gas leaks [1], and tightening controls on gas emissions.
These challenges point to a need for improved equipment
and methods for gas leak detection and quantification [2],
not only for locating fugitive emissions (caused by malfunc-
tioning parts) but also for quantifying emissions by equip-
ment that release gas as part of their design, such as flares
and pressure relief valves [3]. Current leak detection and
repair (LDAR) protocols as well as emission quantification
efforts are implemented by human engineers, so that evalu-
ation is time-consuming and expensive. This high cost of cur-
rent methods presents a barrier to improvement.

Autonomous gas sensing methods can advance the current
state of affairs by removing humans from the most labour-
intensive detection and monitoring tasks. Autonomous sys-
tems can operate continuously night and day, can log and
transmit measurements in real time, and have been demon-
strated to not just detect leaks but quantify them at the same
time.Moreover, they can provide ancillary information such as

long-term monitoring of equipment and environmental condi-
tions, detecting trespassers, and more.

For an autonomous system to be useful, it must have a low
false detection rate, be reliable at alerting when a dangerous
situation occurs, and should be effective at quantifying gas
plume sizes and leak rates—all without human involvement.
In the discussion below, we explain how snapshot infrared
spectral imaging is the key to making this approach work-
able. In order to show how autonomous instruments can be
used to overcome existing labour-intensive methods, we sur-
vey the capabilities and limitations of this rapidly developing
approach and compare with alternative instrumentation. After
reviewing the theory for detection and quantification of gas
clouds using passive spectral imaging, we showmeasurements
from early field deployments.

2. The gas detection status quo

At chemical processing facilities, the standard protocol to
monitor for gas leaks in the United States is EPA Method 21
[4], which requires that designated components in the facility
(valves, flanges, pumps, etc) be leak-tested at regular intervals.
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An LDAR engineer implementing the monitoring procedure
carries a portable gas leak detection instrument (a ‘gas sniffer’)
and slowly passes the instrument’s probe head around the com-
ponent. The instrument draws ambient air up through the probe
head and into a measurement chamber that quantifies the gas
concentration in the air. For gas leaks whose measured con-
centration exceeds a given threshold for the component under
test, the protocol demands that the component be scheduled
for repair.

While the Method 21 procedure is straightforward, we can
also see that the subjective behaviour of the engineer plays a
substantial role in the outcome. For instruments with a slow
response time, the engineer must be careful to hold the probe
head at the source of the leak for a time period exceeding
the instrument’s 90% response time. Meanwhile, wind con-
ditions and component accessibility affect the extent to which
the engineer can locate and accurately quantify the leak.

Method 21 also mentions an alternative procedure in which
a soap solution is sprayed onto the components under test, a
procedure sometimes referred to as ‘soaping’. The user then
looks for the appearance of bubbles. If none appear, then we
presume that there is no significant leak; if bubbles appear then
the protocol calls for returning to the location of the leak with
a gas sniffer.

For quantification of the volumetric flow rate of a leak,
Method 21 suggests two approaches [5]. The more accurate
approach is to seal the leak source with a plastic bag and allow
the trapped gas to pass through a flow meter and a gas con-
centration detector, together which can be used to give the
leak rate in units of L/min or g/s. While this ‘bagging’ pro-
cedure provides an accurate measure of the size of the leak, it
is extremely labour intensive, so that an engineer can quantify
only about 10 leaks per day this way.Method 21 gives a second
leak rate quantification method, which is simply to multiply
the measured gas concentration near the leak, using estab-
lished scaling factors that vary according to the item under
test. The result, however, can vary over three to four orders
of magnitude [6, 7], so that the quantification uncertainty in
this latter approach remains frustratingly large.

Recognising the advantages of using infrared cameras for
gas detection, facilities have increasingly turned to infrared
imaging for LDAR monitoring. This process involves briefly
staring at the components under test with an infrared camera
and looking for any signs of gas leaks. Since a user can exam-
ine many components within a single image, can image com-
ponents that are difficult to access with a sniffer, and can evalu-
ate a component for leaks more quickly than with a sniffer, it is
generally acknowledged that optical gas imaging (OGI) leak
detection is about 10 times more efficient than sniffer-based
detection [8].

In 2008, the EPA approved an alternative work practice,
effectively an amendment to Method 21, allowing the use of
OGI in place of Method 21’s use of gas sniffers [9, 10]. In
2016, the EPA took this even further and issued new rules
[11] requiring the use of OGI as part of a facility’s LDAR
protocol. However, while infrared cameras have proven use-
ful in detecting leaks, their use in quantifying leaks has only
recently been analysed, and is the subject of ongoing research.

Figure 1. An example detection using an infrared camera viewing a
propylene gas release, with the gas column density overlaid onto a
visible camera image.

What we show in sections 6 and 7 below is that quantific-
ation with infrared imaging is now viable, but that users—
and algorithms—need to be better trained to understand how
to achieve the conditions necessary for good results. Finally,
while the algorithms and methodology are still too new to
make their way into the EPA’s rules, researchers are busy
developing methods to quantify gas leak rates using infrared
camera video data.

While the discussion above has centred on regulation devel-
opments within the United States, European regulatory agen-
cies are following a similar trend, with several countries still
requiring sniffing, and other countries allowing either OGI or
sniffing to satisfy monitoring requirements [12].

2.1. Emissions monitoring

In contrast to the detection-centric goal for safety LDAR,
emissions monitoring focuses on quantifying gas emissions.
These two goals are of course closely connected, since one
cannot quantify what one cannot detect, but they are also less
closely related than one might at first expect. For autonom-
ous detection, an essential part of the task is to keep false
detections to a minimum, and for this it is necessary to use
tight constraints on the detection algorithm. For a system aim-
ing for accurate quantification, however, false detections are a
lesser concern if they do not have a strong impact on the total
amount of gas detected. A system can often improve emis-
sions measurement accuracy by using looser constraints on the
detection algorithm. A second difference in the two modes of
operation is that emissions monitoring takes place over a much
longer timeframe than will an algorithm focused on safety and
locating leaks. Thus, monitoring timescales are often days or
months as opposed to the second- or minute-response times of
safety monitoring.

When quantifying gas emissions, users are often attempt-
ing to characterise the efficiency and environmental impact of
operations. For safety and LDAR, intentional emissions are
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treated very differently than fugitive emissions, but for emis-
sions monitoring both categories are treated on an equal foot-
ing. The difference is significant because the two categories
have been shown to be similar in magnitude for industrial
chemical processing plants. [13]

Emissions monitoring suffers from an even larger techno-
logy gap than gas leak detection does. Because existing tools
for estimating the quantity of gas emissions are largely human-
driven, it is labour-intensive and costly to monitor variable
and intermittent emissions sources. The recent literature on
emissions from natural gas production, for example, contains a
lot of hotly contested numbers, stating that conventional EPA
estimates [14] are excessive [15], about right [16], or underes-
timate total emissions [17, 18], depending on the source [19].
While a significant portion of the controversy arises from dif-
ferences between ‘bottom-up’ and ‘top-down’ measurement
methods, in which top-down methods typically estimate much
larger emissions, it is clear that better measurement methods
are needed for resolving these estimates. While infrared ima-
ging cameras have had a significant impact on reducing fugit-
ive emissions, their impact on emissions quantification so far
has been limited.

2.2. Leak rate estimation

The third mode of operation in gas sensing is estimating the
volumetric flow rate of a leak, in which an engineer wants to
characterise the size of an already detected leak in flux units
(volume per unit time) such as L/min or g/s. While leak rate
estimation is closely connected to emissions quantification, it
differs from the other modes in that current technology for
doing this is already quite accurate. The problem to solve,
therefore, is not to improve the accuracy of existing methods
but to make them more practical and less labour intensive.

The established method for measuring leak rate is to wrap
the area of the leak in an air-tight enclosure (‘bagging a leak’)
and connect a flow rate meter and gas concentration sensor to
the enclosure outlet. The problem with this standard method,
however, is that it is labour intensive, and it also directly
exposes the engineer to the leaking gas, which is a safety prob-
lem. An automated solution that can avoid the safety hazard is
a goal that the industry has been pursuing.

3. Autonomous methods for gas sensing and
quantification

Although infrared imaging has been shown to be a more effi-
cient method for LDAR than sniffing, it remains dependent on
the person viewing the camera display to evaluate whether or
not a gas leak is present. Thus, these methods are still prob-
lematic for tasks such as continuous monitoring or detection
of intermittent leaks. Autonomous methods do not rely dir-
ectly on human labour, and thus allow continuous monitor-
ing capabilities that would be prohibitive with existing proto-
cols. This can involve using existing sensors in newways, such
as installing sensors on mobile robot platforms, or developing
entirely new sensor types, and require measurement methods

that are robust enough for users to depend on them to make
important decisions.

There are four types of sensors currently used for gas detec-
tion and quantification: point sensors, line sensors, infrared
imagers, and snapshot infrared spectral imagers. While each
technology has its own strengths and weaknesses, such that an
autonomous detection and monitoring framework that com-
bines multiple sensor types seems likely to develop, snapshot
infrared spectral imaging is an essential tool to make autonom-
ous approaches practical and effective.

3.1. Point sensor networks

Point sensors are gas detectors that analyse gases passing dir-
ectly through them, with the most common sensor types being
chemi-resistive and infrared [20]. Chemi-resistive sensors use
a filmwhose electrical resistance changes in response to chem-
ical environment changes, while infrared optical sensorsmeas-
ure the absorption signature of gas passing through a small
chamber. Point sensors themselves and their associated elec-
tronics are typically quite small, but satisfying the strict safety
specifications required by many industrial facilities means that
they are packaged in durable explosion-proof casings that
makes them larger and heavier than one might expect.

Point sensors report the detected gas in concentration units
(parts per million, or ppm), have typical response times on the
order of seconds to tens of seconds, and can often detect con-
centrations of < 1 ppm, depending on the technology used and
the type of gas detected [21, 22]. They typically cannot dis-
criminate among different gas types, and generally have dif-
ferent response amplitudes for different gases, so that the gas
type must be known a priori for accurate concentration meas-
urement. Point sensors used in fixed emplacements detect the
gas passing through their immediate vicinity, while sensors
attached to workers’ uniforms detect gas present in the area
through which a worker walks. They have also been attached
to robots or moving platforms [23].

Because point sensors detect the gas concentration at one
location, by themselves they cannot distinguish between a low-
level leak nearby, a large leak far away, or even the direction
of the leak. Industrial chemical processing facilities have point
sensors distributed at key locations, such as in figure 2, so it
is natural to try networking the sensors together to localise
leaks. With multiple sensors operating as a network, localising
the leak becomes more effective as the density of the network
nodes increases. The complex 3D behaviour of gas plume and
natural wind motion, however, make this a challenging inverse
problem. Even at short distances from a leak, point sensor
detections can be erratic. Averaging the detected concentra-
tion over longer measurement periods effectively smooths out
the most complex details of the motion, improving the prob-
lem’s invertibility [24–26], but any sensor layouts near leak
sources still require fluid dynamical models to determine the
relationship between air flow patterns and detected concen-
trations. Chraim et al, for example, demonstrated experiment-
ally how a sensor grid with nodes spaced 4 m apart allowed
for localising leaks to within 5 m of the source, for measure-
ments averaged over a 100 s period [27]. If we consider an
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Figure 2. Conceptual image of a point sensor network at an
industrial site, where each red circle indicates the location of a
sensor.

example facility that is 1 km2 in area, however, this spacing
requires a network of 62,500 sensors, and that is only for the
two-dimensional area of the facility and so ignores the need for
some vertical stratification of nodes as well, since most gases
are significantly lighter or heavier than air.

Themost commonway of getting out of thesemeasurement
difficulties is to change the scale of the model in both space
and time. By averaging over long periods of time, and by ana-
lysing the concentration far downwind of the leak—far away
from the disturbing effects of nearby equipment on airflow—
the time-averaged behaviour of the gas mixing with the ambi-
ent air comes to approximate a kind of diffusion transport
under certain atmospheric conditions. Diffusing fluids have
well-behaved Gaussian distributions of concentration that are
easily inverted by estimating a small set of model parameters.
This is the Gaussian plume model of gas emission [28].

In a Gaussian plume model, the 3D gas concentration dis-
tribution ρ(x, y, z) downwind of a constant leak source can be
constructed for either smooth wind flow or turbulent flow, by
incorporating different diffusion constants [29, 30]. In smooth
wind flow, ρ represents an instantaneous snapshot of the gas
concentration, while in turbulent flow ρ represents a time aver-
age of the gas concentration, with the decorrelation time of the
plume flow giving theminimum length of time to average over.
Appropriate time scales range from 10 min to 10 hr depending
on the extent that turbulence causes changes in wind direc-
tion [25, 31]. Figure 3 shows a plume model overlaid on an
example gas release.

A widely-used version of the Gaussian plume model gives
the downwind gas concentration ρ (g m−3) by [31]

ρ(x,y,z) =
ϕ

2πuσyσz
exp

(
− y2

2σ2
y
−

[
z− h

]2
2σ2

z

)
(1)

where x is the distance downwind from the leak source, z is the
vertical displacement from the ground, ϕ is the gas leak rate
(g/s), and u is the x-direction wind speed (m s−1). The plume
concentration profile width parameters are given by σy(x) and
σz(x) in the horizontal and vertical directions, while h is the
vertical position of the middle of the plume. While this simple

Figure 3. Gaussian plume model.

model of (1) does not account for gas buoyancy, it can easily
be adapted to include it [32].

With the Gaussian plume model and knowledge of the
instantaneous (for smooth flow) or time-average (for turbu-
lent flow) wind speed u and direction together with the gen-
eral atmospheric conditions, we can take any three or more
gas concentration measurements from point sensors within
the plume to determine the (x, y, z) location and intensity ϕ
of a leak from the Gaussian parameters h, σy, and σz. While
this means that only three sensors, or a single sensor trans-
ported to three locations, are in principle needed to localise
and quantify a leak, the difficulty of accurately satisfying the
model assumptions and the extended time required to average
out turbulence effects can be problematic. Attempts to verify
measurement accuracy have run into difficulties with model
specification (e.g. defining the dependence of σy, and σz on
distance x) and the need to accurately measure low concentra-
tion values so far from the leak source [33, 34].

As implied by figure 3, the Gaussian plume model is only
appropriate when the air flow is unobstructed, so that the
model is not useful for locating leaks within the perimeter of
complex industrial facilities but only far from leak sources.
Large-scale plume vortices may even dominate dispersion of
plumes 5 to 10 km downstream of the source [35]. Closer
to the leak source, more accurate fluid dynamical models of
the plume are needed, constructed from knowledge of the 3D
shape of the structural environment [22, 36].

3.2. Line sensors

Line sensors are the second type of gas detection technology.
A typical line sensor system uses a laser light source and a pho-
todiode detector, with the laser tuned to a wavelength match-
ing a strong absorption peak of the target gas. The detector
commonly uses a narrowband spectral filter so that it is insens-
itive to any light other than the illumination laser. For gas
detection, the laser passes along a line through the region to
be monitored, at the end of which is either the detector or a
retroreflector that returns the laser back towards the detector
(i.e. bistatic or monostatic configurations) [37].
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Figure 4. Three types of gas sensing instruments: point sensor, line
sensor, and imager.

A modified implementation of the line sensor involves
using two lasers, or a single laser emitting two wavelengths,
where one wavelength is tuned to a gas absorption peak while
the other is tuned to an absorption minimum. This helps to dis-
tinguish between absorption by the target gas and absorption
by an interference agent such as steam or dust. Tunable diode
laser absorption spectroscopy (TDLAS) uses a similar tech-
nique of tuning the laser wavelength across the gas’ absorption
spectrum profile [38].

Line sensors have a significant advantage over point sensors
in that a single instrument can monitor for gas along all points
intersecting the laser, rather than at just one location. The
use of specific gas absorption wavelengths makes the line
sensors robust to false detections, while also maintaining a
high sensitivity. A major difference between these instruments
and point sensors, however, is that they use a less familiar
unit of measure. Rather than gas concentration ρ (units of
m−3), the unit of measure is the gas column density ζ (units of
m−2) — the gas concentration integrated along the laser path
length,

ζ =

ˆ
ρ(z)dz ,

where z is the propagation direction of the laser. While the
column density units can take more effort to get used to than
concentration does, ζ is actually more useful than ρ for leak
rate quantification, as shown in later in section 6. (The symbol
ζ is appropriate for the column density in that its shape some-
what resembles both a ‘c’ and a ‘d’ for ‘column density’.)

3.3. Gas imaging techniques—active sensing methods

The third gas sensing technology is gas imaging, implement-
ation methods for which can be separated into two broad cat-
egories of active and passive techniques: either requiring a spe-
cialised light source or using the natural environment formeas-
urement [39]. Like line sensors, active imagers generally use
a laser for illumination, but scan the illumination beam across
the field of view in order to estimate the spatial distribution of
gas. Thus, many are scanning-based extensions of line sensing
methods.

Differential absorption LIDAR (DIAL) uses a pulsed tun-
able laser operating at two discrete wavelengths, one at a
strong absorption peak and the other at an absorption min-
imum. Using the pulses for time-gating, the DIAL system
looks for the backscattered signal and uses the return time to
determine the distance to the gas. Thus, unique among the gas
imaging techniques discussed here, DIAL’s unit of measure is
the gas concentration ρ rather than its integral ζ =

´
ρ(z)dz.

An example DIAL instrument [40] was used to measure the
gas concentration in a 50 m× 500 m vertical plane over a
period of 5–7 min.

Backscatter absorption gas imaging (BAGI) illuminates a
scene with laser light at a wavelength tuned to an absorp-
tion peak of the target gas, analysing changes in backscattered
light from the scene for presence of gas [41, 42]. When the
laser wavelength is strongly absorbed by the target gas, the gas
plume thus appears as a black cloud against the more brightly
illuminated equipment background. This makes for a compact
imaging instrument, but suffers from reduced light intensity,
and therefore sensitivity, in comparison to the line sensing
methods.

The scanning laser illumination methods of active gas
imagers means that they are generally too slow to provide
video-rate measurements, even when using high-power laser
sources. As a result, they have difficulty measuring the wisps
and swirls of turbulent gas that occur at small scales, so they
they are best suited to large-scale leaks or smooth flow condi-
tions.

3.4. Gas imaging techniques—passive sensing methods

Passive imaging instruments use only the natural signals from
the environment to detect gas plumes. The basic principle that
they all employ is that when gas passes between the cam-
era and the background scene, it reduces (or enhances) the
radiance of the background if the gas is cooler (or warmer)
than the background [43–45]. This difference between gas and
background radiance is generally referred to as the ‘thermal
contrast’ or ‘radiance contrast’. While this measurement prin-
ciple has the advantage of not needing an artificial light
source, it has the disadvantage that it must rely on sophist-
icated algorithms to separate natural changes in the scene
radiance from any changes due to gas. Sections 4–7 below
discuss the theory in detail and show example experimental
data.

Gas correlation imaging is a method that has been around
for over two decades now, and works by viewing a scene
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simultaneously through one spectral filter and one transpar-
ent window, either using a split pupil or two separate cam-
eras [46–48]. The spectral filter is constructed as a cylinder
filled with the target gas—an effective way to optimise meas-
urement sensitivity, since the filter transmission function is
exactly matched to the target gas. The camera behind the filter
experiences a larger relative change in signal when the target
gas appears than will the camera with the broadband filter, and
this difference can be used to calculate the column density of
gas present. Sandsten et al showed example 136× 136 images
of methane, ethylene, and ammonia captured at 15 Hz frame
rates [47].

Filtered-camera gas imaging has the simple hardware setup
of inserting a narrowband spectral filter in front of a cryo-
cooled thermal camera [13]. While the narrowband filter is not
fully optimised to the target gas, as it is in correlation imaging,
this method requires only one camera/pupil and works for a
wide range of gases. A viewer watching the scene through one
of these cameras looks for changes in the scene radiance to
indicate the presence of gas moving across a scene. The sim-
plicity and effectiveness of this approach has made it the most
popular choice for LDAR use, to the point that many now refer
to it as ‘smart LDAR’.

A disadvantage of the filtered-camera approach is that it is
not gas-specific, and thus can only be used for quantification if
the gas species is known a priori. An alternative is to allow the
camera to use one of a number of different filter bands [49].
Since gas spectra are more distinct in the longwave spectral
band (LWIR, 8–12 µm) than the midwave range (MWIR, 3–5
µm) usually used by filtered cameras, this approach operates
in the former range, and employs a filterwheel to select among
a set of different spectral filters for a specific scene.

While these passive methods have a large speed advant-
age over active imaging techniques, they generally have diffi-
culty in accurately estimating absolute column densities rather
than relative column densities. The measurements are typic-
ally obtained as the difference in radiance between the cur-
rent scene and a reference scene. In order to estimate abso-
lute column densities, these systems have to make assump-
tions about the gas present in the measurement and reference
scenes—assumptions which can make the measurements sus-
ceptible to error.

Imaging Fourier transform spectrometry (IFTS) uses
an imaging Fourier-transform spectrometer to measure the
infrared radiance spectrum at each pixel of the scene [50]. The
instrument spectral resolution is typically chosen as a tradeoff
of spectral information detail for measurement speed, so that
a user can reduce the speed of measurement in order to get
high spectral resolution, and therefore higher sensitivity to
gas. A strength of this approach is that the detailed spectrum
allows an algorithm to estimate the quantities of multiple spe-
cies of gases simultaneously. This makesmeasurements robust
against interference gases such as steam, and allows the quan-
tification of gas mixtures, even when the gas mixture propor-
tions vary from pixel to pixel. Sabbah et al demonstrated the
use of an imaging FTIR set to 4 cm−1 resolution over the
1050–1150 cm−1 spectral range (i.e. 8.3 nm average resolution
over 8.70–9.52 µm) imaging methane emitted from industrial

stacks and also a large plume of SF6 gas viewed from a dis-
tance of 800 m [51]. At this resolution, however, the imaging
rate achieved was only 1 frame per 15 seconds (0.067 Hz).

3.5. Gas imaging techniques—snapshot spectral imaging

Snapshot spectral imaging is the newest among gas sensing
techniques. It consists of a method that augments the passive
infrared imaging techniques with recently-developed instru-
mentation to measure the infrared spectrum at each pixel of
the scene in real time. [52] This maintains the ability to image
scene dynamics at video rate, while also keeping the robust-
ness advantages of capturing the spectrum. Since smaller gas
plumes are inherently dynamic, with rapidly moving swirls
and eddies, this video measurement capability is essential
for better sensitivity and locating smaller leaks. Moreover,
since many industrial facilities are permeated with steam,
and with pipe structures placed in dust-prone environments,
using the radiance spectrum to remove false detections due to
these interference agents provides a more robust platform for
autonomous detection. Finally, as with IFTS, having the spec-
trum at each pixel in the scene also allows the user to discrim-
inate between gas types and to measure gas mixtures.

The recent development of snapshot spectral imagers takes
advantage of the confluence of four modern technology
advances: fast computing, large-pixel-count detector arrays,
high-speed data transmission, and precision manufacturing.
Each of these advances has been essential to making the tech-
nology work, so that it is only in the past decade that snapshot
spectral imaging methods have become practical for indus-
trial sensing. Although these systems can be difficult to build,
they basically operate like N different gas imaging cameras,
all imaging the same scene at the same time, using N different
spectral transmission bands. Thus, unlike with scanning sys-
tems such as IFTS, the snapshot approach does not have to
sacrifice light efficiency in order to collect spectral data, and
collects the data at a much faster rate, though at a lower spec-
tral resolution than IFTS [53]. Additional advantages from an
algorithmic point of view are that because the data is collected
in snapshot form, there are no motion artefacts due to scan-
ning over a moving scene, and algorithms can make use of the
a complete 4D (x, y,λ, t) dataset for measuring spatio-spectro-
temporal correlations to detect gas. For example, a gas plume
emanating from a leak will produce a distribution of gas near
the leak that will, in the next frame of the video, expand out
into the neighbouring pixels. Therefore the spatial elements
in one frame are closely correlated to nearby spatial elements
in the subsequent frame—a priori information that algorithms
can put to good use to improve detection sensitivity.

Currently the only snapshot spectral imaging systems act-
ively deployed in industrial gas sensing are based on uncooled
longwave infrared detectors, so that they have different meas-
urement characteristics than the midwave (3–5 µm) filtered
cameras used in ‘smart LDAR’. Midwave cameras view the
‘functional group region’ of gas absorption spectra, where
many hydrocarbon gases have similar spectral shapes. Cam-
eras that work in the longwave (8–12 µm) spectral region,
however, operate in the ‘fingerprint region’ for these gases.
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In this region, the spectral shapes of the various hydrocarbon
gases are more distinct from one another, so that speciation is
more robust.

Two driving factors determine that there will be large dif-
ferences between practical snapshot spectral imager detection
and quantification algorithms and those of the existing literat-
ure: the need for autonomous measurement, and the need to
operate on a live video stream. The former precludes methods
that require user input and supervision, while the latter pre-
cludes any algorithm that cannot operate live on a data stream
of > 5 megavoxels per second. In addition, the need to col-
lect video-rate data in real time precludes the use of high-
resolution spectroscopy, as this both increases the data rate
even further and reduces the signal-to-noise ratio of the data.

3.6. What each technology means for autonomy

Autonomous sensing for gas LDAR and emission monitoring
has long been a goal for instrumentation developers, but has
remained out of reach. For point and line sensors, the sens-
ing regions are often too sparsely sampled to give sufficient
information for autonomous action. For infrared imagers, the
primary difficulty has either been the vulnerability to inter-
ferents such as steam, or failure to discriminate among gas
species. For scanning-based spectral imagers such as IFTS,
it has been difficult to overcome the low data rate and poor
SNR. Snapshot spectral imagers have have a much higher
light throughput [54] than traditional scanning methods can
achieve, and allow for video-rate imaging [55]. Since gas
clouds are dynamic phenomena and require video analytics to
properly detect them, these are important advances for improv-
ing sensitivity, reducing false detections, and accurately quan-
tifying the gas.

The discussion so far has focused on fixed emplacements of
point, line, and imaging sensors, but another option is to attach
sensors to mobile platforms—vehicles, mobile robots, or facil-
ity workers themselves—so that the gas leak detection can be
pursued actively [56].Mobile sensor platforms can use chemo-
taxis, the principle by which animals locate the sources of
scents for food etc to locate gas sources bymoving in the direc-
tion of highest concentration gradient [27, 57]. Future facilities
may see a network of mobile detection robots deployed, each
monitoring for leaks and, upon detection, collectively search-
ing for leak sources.

Mobile options for LDAR have not yet seen much devel-
opment, possibly due to the safety difficulties of operating
moving equipment in strict safety conditions and potentially
flammable environments. However, a number of research-
ers have developed mobile platforms for emissions monitor-
ing and quantification, such as by attaching a series of point
sensors to a truck that passes through a thin-concentration
(non-inflammable) gas cloud [58, 59].

4. Gas imaging detection model

Infrared gas imaging uses radiance changes in a scene to
look for absorption or emission signatures generated by gases

Figure 5. The measurement geometry for a single pixel in a gas
cloud imager: the camera line of sight views the background
infrared radiation (1) through a gas cloud layer (2) and a foreground
atmospheric layer (3). Each layer has a spectral radiance L,
transmission τ , and temperature T.

passing between the camera and the background [60]. We can
model the effect of a gas cloud passing across a scene with a
three-layer radiative transfer system (figure 5), in which

(a) Spectral radiance Lb(λ) is generatedwithin a source region
which can be either an opaque object such as the ground,
or the atmosphere itself, such as when viewing a cloudless
sky, or a combination of the two.

(b) The source spectral radiance traverses the gas cloud layer,
and is attenuated/increased by absorption/emission of
gases located there.

(c) The radiation passes through an atmospheric layer to reach
the camera.

This three-layer model does not require any assumptions on
the background spectrum Lb(λ) behind the gas cloud [61].

In the discussion below, we use the following variable
definitions:

Lf,Lg,Lb spectral radiances originating from fore-
ground, gas, and background layers

M radiant flux at the camera pupil
τ f, τ g transmission of foreground and gas layers
ϵf, ϵg emissivity of foreground and gas layers
Tf,Tg temperatures of foreground and gas layers

The absorption spectrum of a gas is defined by

αg(λ) = 1− exp
[
−
(ˆ ℓ

0
ρ(z,λ)dz

)]
≈ σ(λ)ρℓ , (2)

where ℓ is the path length through the gas cloud. The approx-
imation used here assumes that the gas cloud is homogeneous
(so that the integral becomes a simple multiplication) and that
the absorption is small (α≪ 1) so that the exponential can be
approximated as e−x≈ 1− x so that α≈ x. This is the ‘thin
gas’ approximation.

For a pixel in the scene observed by the camera, we can
write the radiative transfer equation of a ray along the line of
sight to give an at-pupil radiative flux M of

Mw =

ˆ λ2

λ1

[
ϵf(λ)B(Tf,λ)+ τ f(λ)ϵg(λ)B(Tg,λ)

7
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+τ f(λ)τ g(λ)Lb(λ)
]
dλ

≈ ∆λw
[
ϵf,wBw(Tf)+ τf,wϵg,wBw(Tg)

+τf,wτg,wLb,w
]
. (3)

where λ1 and λ2 give the passband of the wth spectral chan-
nel, and a w subscript indicates an average across the pass-
band. Also, B(T) is the Planck blackbody spectral radiance
function for temperature T, τ is the spectral transmission of
a layer, and ε the spectral emissivity of a layer. For a broad-
band imager, λ1 and λ2 are given by the spectral range of the
optical filter on the camera. Using Kirchhoff’s law [62], we
can equate the emissivity spectrum with the absorption spec-
trum, ε=α and further relate the absorption and transmission
spectra, α= 1− τ . Thus, using (3), we can model the radiance
measured with (M′) and without (M) gas present as

Mw = ∆λw
[
(1− τf,w)Bw(Tf)+ τf,wLb,w

]
,

M′
w = ∆λw

[
(1− τf,w)Bw(Tf)+αf,wτg,wBw(Tg)

+τf,wτg,wLb,w
]
.

The difference ∆Mw =M′
w−Mw gives

∆Mw = τf,wαg,w∆λw
[
Bw(Tg)−Lb,w

]
. (4)

Figure 6 shows αg(λ) (green curve) for ammonia gas, together
with an example M(λ) (red curve) and M′(λ) (black curve)
for a 30◦C gas passing in front of a background blackbody
at 50◦C. Re-arranging (4) to solve for the gas absorption, we
obtain

αg,w =
M′
w−Mw

τf,w∆λw
[
Bw(Tg)−Lb,w

] . (5)

The denominator here is a difference of radiances (the ‘radi-
ance contrast’) ∆L= Bw(Tg)−Lb,w that is closely related to
the thermal contrast ∆T= Tb −Tg. The sign of the denom-
inator indicates whether the cloud is observed in emission
(∆L > 0) or absorption (∆L < 0), but the estimated αg using
(5) is positive in both situations. Note that the denominator
can come close to zero, so that the estimate for αg should be
regularized, for example by adding a small constant value to
the denominator, or by using a Wiener filter.

If the reference measurement M contains no gas, we can
easily solve for the background radiance Lb,w in each spectral
channel:

Lb,w =
1
τf,w

( Mw

∆λw
−
[
1− τf,w

]
Bw(Tf)

)
. (6)

It is common to assume that the temperature of the gas and
the ambient air are approximately the same, Tg ≈ Tf, under
the assumption that the gas quickly entrains into the local air.
Inserting this into (6) and substituting the result into (5) gives

αg,w =
M′
w−Mw[

Bw(Tg)∆λw
]
−Mw

. (7)

Note that τf,w has disappeared from the expression: the fore-
ground layer plays no role in the absorption estimate, except
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Figure 6. An example measurement for ammonia gas (column
density ζ= 5500 ppm.m), showing a simulated measurement
spectrum M′(λ) (black curve) when the background source is a
blackbody at Tb = 50◦C (red curve) and the gas temperature is at
Tg = 30◦C. The absorption spectrum (green curve) is given at an
arbitrary scale, for a thin gas cloud.

insofar as it reduces the measurement SNR. All of the vari-
ables on the right hand side of this equation are quantities that
we canmeasure or estimate. Equation (7) gives the gas absorp-
tion separately for each spectral channel in the system, from
which we can calculate its correlation with the known spectral
shape of various library gases. Together with an estimate of
the noise, this correlation allows us to calculate the probability
that themeasured spectrum indicates presence of the gas. If the
probability exceeds a selected threshold, the pixel is labelled
as a probable detection. The detection at this step is labelled
as only probable because a more sophisticated algorithm can
next take advantage of spatio-temporal correlations in the gas
motion to improve the probability estimate. For example, if
gas is detected at a given pixel, then it is likely to be detected
in its neighbouring pixels as well, and the same gas parcel is
likely to be found nearby in the following data frame as well.
Incorporating these spatio-temporal features, and knowledge
of gas fluid dynamics, into the detection algorithm produces
an iterative procedure that improves the detection sensitivity.

Discussions of (7) typically refer to gas absorption, imply-
ing that the gas is cooler than the background source. However,
an important case where observation of gas is seen in emis-
sion is that of a sky background. Not only does the sky occupy
a large portion of the field of view in many situations, but it
can also have a large radiance contrast. A clear blue sky back-
ground can provide over 50◦C of thermal contrast for many
spectral bands across the 8–12 µm spectral range, if the local
humidity is low [63].

4.1. Background-foreground separation methods

The most difficult step in equations (4)–(7) above is to determ-
ine the spectrum of the background layer M(λ) — a variant
of the well-known ‘background-foreground separation prob-
lem’ from the image processing literature [64]. Perhaps the
simplest approach for separating background M from fore-
ground∆M begins by assuming that in a given video sequence
the background is present much more often than the fore-
ground at any given pixel. If we simply take a running mean
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or running median image, this mean or median can then
be used as a rough estimate of the background. The fore-
ground (the gas cloud, in our case) is then obtained by taking
the difference between the current image and the estimated
background.

A more sophisticated approach may use an adaptive Gaus-
sian mixture model. In this algorithm, at each frame of
a video sequence, the spectrum at each pixel is modelled
as belonging to either of two Gaussian distributions, rep-
resenting the background spectrum and gas spectrum. As
more frames follow, the estimates of the two distributions
improves, with the two means representing the background
and foreground spectra at that pixel. This approach can be
configured as an adaptive online algorithm that is not com-
putationally expensive, so that the calculation can run in
real-time [65].

A third approach assumes that the background is a grey-
body, so that its spectrum follows a set of easily parametrized
curves [66]. Once we fit the data to the nearest greybody curve,
we can take the remainder of the spectrum to represent the gas
layer. Since there are many situations in which these assump-
tions do not hold well, researchers have also tried to relax
the greybody requirement and instead assume that the back-
ground radiance Lb(λ) is smooth: Lb(λ) varies more slowly
with respect to λ than the gas absorption cross-section spec-
trum σ(λ) [67, 68]. Making use of this assumption, however,
generally requires a significant spectral resolution, making
measurement times long. It is also more effective on gases that
have narrow spectral features, such as methane and ammonia,
than those with broad spectral features, such as propane and
propylene [69].

A fourth approach to the separation problem is to decom-
pose the spatial-spectral scene into its principal components,
so that if gas pixels comprise only a small number of pixels in
the scene, then the primary principal components will be unaf-
fected by gas spectra [70, 71]. Because of the complexity of the
decomposition, however, it is hard to predict the reliability of
the algorithm for any given scene, and spatially complex struc-
tures can cause the algorithm to become unstable. Moreover,
scenes in which gas clouds comprise a significant fraction of
the image make the algorithm insensitive to gas [72]. This is
a dangerous property for an algorithm to have, as it makes
the system blind during the most critical situation. In addition,
the principal components approach involves a heavy compu-
tational load that can cause difficulties for video-rate spectral
imaging.

4.2. Gas mixtures and interferents

In the presence of multiple gas species, each of which is
weakly absorbing, the overall absorption can be written as a
linear sum over the component absorbances of each species
[73]. Thus, for N gases, in the thin gas and homogeneous layer
approximations,

αmix = 1− exp
[
−

N∑
i=1

σi

(ˆ ℓ

0
ρi(z)dz

)]
≈

N∑
i=1

σiρiℓ . (8)

(Wavelength dependence in each parameter is left implicit.)
If the ratios of the various constituent species within the gas
mixture are known and remain constant—a common situation
for industrial sites and if the gases are of similar densities—
then the gas mixture can be characterised with single effect-
ive cross section: αmix = σmixρmixℓ. Thus, while one may use
spectral unmixing [74] and matched filtering [75] algorithms
to estimate the column density images of multiple gases simul-
taneously, this simple solution is sometimes all that is needed.

Another complication of measuring in industrial facilit-
ies is the ubiquitous presence of steam and sometimes dust.
Although these are aerosols, both of these act as interfer-
ence gases that change the measured spectral radiance, but
which are of no interest to the final measurement. As aerosols,
these two interferents also change spectral shape depending
on particle diameters [76, 77], so that their spectral profiles
belong to families of shapes rather than a single fixed spec-
trum [78]. If any member of these continua of shapes has a
high correlation with one of an instrument’s target gases, then
discrimination between them becomes difficult using infrared
alone. Instruments that employ visible cameras registered to
the same scene as the infrared images, however, have a con-
venient means of separating the two: steam and dust plumes
are visible, whereas most target gases are invisible.

5. Gas image column density quantification

Once gas is detected within a pixel, estimating its column
density ζ is straightforward. Equation (4) relates the absorp-
tion of the gas layer to the measured changes in radiance at the
sensor. Using the Beer–Lambert–Bouguer law, the transmis-
sion is related to the concentration ρ and path length ℓ through
the gas cloud as

τ g(λ) = exp
[
−σ(λ)

ˆ ℓ

0
ρ(z)dz

]
≈ exp

[
−σρ(λ)ℓ

]
. (9)

The absorption cross-section σ(λ) (units of m2) is known a pri-
ori from the type of gas detected, and can be measured directly
or obtained from a spectral library, such as the NIST Infrared
Database or the PNNL infrared spectral library [79, 80].
We use ρ(z) for the gas concentration (number density) along
the line of sight and ρ (with no explicit z-dependence) as the
average concentration along the line of sight. Because ρ and
ℓ cannot be separated from one another, they are grouped
together into a single quantity—the column density ζ = ρℓ—
the typical units for which are ppm.m (parts-per-million times
meter).

When the gas concentration is low (the thin gas approxim-
ation), equation (9) can be written as αg ≈ σζ, and so the gas
column density becomes a linear function of the absorption.
Going from the estimated absorption to estimated gas column
density therefore requires only scaling by the cross-section:

ζ = αg/σ . (10)

The column density has SI units of m−2. We can convert this
to units of ppm.m by multiplying by the density of molecules

9
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Figure 7. A detector pixel projected to the location of a gas cloud.

in air (ρair = 2.687× 10−25m−3 at STP), and scaling the result
by 10−6 [81]. An example of applying this estimation to each
pixel in an image is shown in figure 1 for a controlled methane
gas leak.

5.1. Estimating the total quantity of gas in a plume

From an image of the gas column density, we can also estimate
the total amount of gas in a cloud. That is, if we scale each pixel
to the projected area Aproj at the location of the gas cloud (fig-
ure 7), then multiply the projected area by the detected column
density, we obtain the total volume of pure gas in the pixel
(units of L, m3, or ft3):

Vgas = Aprojζ .

The projected area of a pixel at the gas cloud is easily
obtained by multiplying the known dimensions of the detector
array pixels (px,py) by the image magnification, given by the
lens focal length f and the distance z to the gas cloud:

Aproj =
(
pxz/f

)(
pyz/f

)
. (11)

If we wish to estimate the mass of gas within the cloud, we can
first calculate the total number of molecules N in the cloud by
multiplying Vgas by the number of molecules per cubic meter
ρair at the ambient atmospheric temperature and pressure. The
total mass of the gas cloud (g, kg, or lbs) is then obtained by
multiplying N by the gas molecular weight.

While the pixel size and the lens focal length are known as a
result of the hardware design, the gas cloud distance z from the
camera varies and must be estimated. One method for doing
this is to establish distances when setting up a gas cloud ima-
ging camera at a facility. After fixing a camera’s position, the
installer measures the distances from the camera to the primary
items to be monitored—items such as a collection of pipes, the
wall of a gas container tank, the relief valves of a gas separator
tank, etc. Thus the distance at which leaks are likely to occur
can be established a priori. Other methods include using trian-
gulation with multiple cameras, or using fluid dynamical mod-
els to compare estimated speeds of gas motion with measured
speeds.

This ability to directly estimate the total volume or mass of
a gas cloud is one of the advantages of measuring in ppm.m

units instead of concentration. From the total volume, we get
a view of the overall scale of the leak, which helps to decide
whether to issue a safety alarm. This can be something as
simple as logging a measurement when the volume of gas is
small, issuing a warning when the gas cloud is large, and caus-
ing an alert when the cloud has reached a dangerous size.

5.2. Estimating the volumetric gas concentration

From a safety perspective, it is important to know the volu-
metric concentration ρ(x, y, z) of a flammable gas cloud, as
it indicates whether the gas is capable of igniting. Methane,
for example, ignites if in concentrations of between 5% and
15% (the lower and upper explosion limits, LEL and UEL),
when mixing in air at STP [82, 83]. A cloud of methane con-
taining concentrations everywhere below the lower limit will
not ignite, even when exposed to an ignition source such as a
spark or flame. Clouds of methane gas that are too rich (above
the upper limit of 15%) also do not ignite. However, high-
concentration clouds quickly diffuse into surrounding air, so
that their outer edges contain a flammable border region. Thus,
high-concentration plumes are a safety hazard.

For estimating concentration, point sensors have an advant-
age in that they measure concentration directly, but have the
disadvantage that they can only sample the concentration at
one point. While a point-sensor measurement giving a value
above the lower explosion limit directly indicates a hazard, a
value below the LEL is ambiguous. Without a physical model
for the gas cloud, one cannot know whether the measure-
ment is low because the overall cloud concentration is low or
because the leak source is too far from the sensor.

Although gas imagers detect in units of column density ζ
rather than concentration ρ, they can obtain rough estimates
of the concentration distribution within the gas in real-time
using heuristics, as we describe below. Imagers can also form
accurate estimates using fluid-dynamical models of the detec-
ted gas cloud [84, 85], or by simultaneously collecting projec-
tions through the cloud from multiple points of view [86, 87],
but these methods are typically too computationally intensive
to run in real-time. In practice, a rough estimate (via heurist-
ics) can be useful as a quick initial guess for the concentration
distribution ρ(x, y, z, t).

The first step in the heuristic method is to model the gas
cloud measurement as the projection of a cylindrical shape
with its axis oriented in the direction of the gas flow, as shown
in figure 8. If the axis of the gas plume motion is purely trans-
verse (does not have a component along the view direction,
z), then the estimated depth dimension of the plume becomes
the same as its height dimension. For example, in figure 9, the
transverse gas motion allows us to say that, at the position in
the plume indicated by a red border, where the height of the
gas cloud is 0.52 m (23 pixels in the image), we can estimate
the depth of the plume to be approximately 0.52 m.

The second step involves a weighted backprojection of the
2D data into the 3D volume, using a Gaussian-shaped weight-
ing function such that the center of the cloud has a higher
estimated concentration than the edges of the cloud. Figure 8
shows the projection of a 1D slice from the data into a 2D
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Figure 8. The backprojection of a column density gas measurement
into a cylindrical concentration volume. The vertical column of data
is taken from a slice through the estimated gas cloud shown in
figure 9(b).

volume in order to demonstrate the procedure clearly. One
can tune the degree to which the concentration is focused in
the center versus the periphery by adjusting the width of the
Gaussian function which sets the relative weights. The result-
ing tubular volume gives an estimate for the concentrations
within the cloud, where integrating through the volume repro-
duces the column density image.

Because the concentration estimates using the above
approach employ simple heuristics rather than a physics-based
model, the results give only a rough estimate of the concen-
tration. However, it has the important advantage that it can
operate in real time. For a more accurate model, it is neces-
sary to build a 3D fluid-dynamical model that is constrained
to give the same projection through the cloud as was meas-
ured by the camera. Doing this accurately under the weak con-
straint of a single measured image is difficult, but the model
can be improved through the use of multiple frames in a video
sequence. Getting this to work well is an ongoing subject of
research [87].

6. Estimating the volumetric flow rate of a leak

One of the primary advantages of a video-rate imager used for
gas sensing is that its sampling is complete in the 3D (x, y, t)
space of a video sequence. Thus, pixels in one frame are neigh-
bours of the same pixels in the subsequent frame of the video,
so that it becomes possible to design algorithms analysing
spatio-temporal correlations within the gas cloud. If a gas is
found in one area within the scene, there will be a high probab-
ility of finding it in the sample place, or close nearby, in the fol-
lowing frame of the video. Thus, temporal correlations can be
used to improve the sensitivity of the gas detection algorithm.

Another application for using these spatio-temporal correl-
ations is estimation of the volumetric flow rate—the gas flux
or leak rate. Existing algorithms for doing this all incorpor-
ate some variant of optical flow techniques to estimate how
each parcel of gas moves within the image. That is, multiply-
ing the volume of a parcel of gas times its average rate of flow
away from the leak source, and summing over all parcels of
gas detected, gives an estimate of the total flux [50, 88, 89].
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Figure 9. An example gas flow measurement for methane released
from a pipe through a gas flow controller: (a) a simplified physical
model for the jet and plume components in the flow; (b) a snapshot
of one frame in the gas column density video; (c) the corresponding
gas velocity vectors. The red and blue squares in (c) indicate two
example locations for placing a boundary used to evaluate the flow
rate. The red rectangle shown in (b) indicates the region used in
figure 8 as an example concentration backprojection.

When using a pixel-by-pixel estimate of the flow rate, one
way of verifying that the algorithm is behaving consistently is
to use nested boundaries, as shown in figure 9(c). Since each
boundary contains the leak source, each should produce the
same time-averaged leak rate.

While we focus on imagingmethods for estimating the flow
rate, point sensor networks employingGaussian plumemodels
of the leak can also be used for estimating flow rate [29]. How-
ever, these have only been demonstrated as useful for large
leaks and smooth flow conditions. In order to expand the range
of application, Safitri et al demonstrated that one can combine
the Gaussian plume modelling with single-frame infrared gas
imaging to quantify leak rate [90]. While this allows improved
modelling of smaller leaks, it still overconstrains the profile
and dynamics of the gas, affecting accuracy. Although it has
not yet been demonstrated, video gas imaging should be able
to significantly improve on this. By averaging over a long time-
sequence of gas detection frames, the data comes closer to the
time-average approximation required for Gaussian diffusion.

In the discussion below, we introduce the conventional
optical flow algorithm and then show why it is inadequate for
most gas imaging data. Fixing the algorithm requires using
a more sophisticated implementation that constrains the flow
estimate with a fluid-dynamical model.
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Figure 10. (a) A camera measuring the light coming from a fluid
distribution (e.g. gas cloud). (b) The integral along a line through a
fluid of concentration ρ gives a value at the image in column density
ζ. The average velocity û along the line of sight is derived from a
weighted sum of the individual velocities ui.

6.1. Principles of optical flow algorithms

Optical flow algorithms are based on the concept that when an
object moves across the image, its brightness I at each point
stays the same. This is often referred to as the ‘brightness con-
stancy’ assumption [91]. In the context of measuring gases, the
‘brightness’ represents the gas concentration, in which case it
is more appropriate to call this assumption the continuity con-
dition, as it enforces the conservation of mass within a local
neighbourhood. The continuity condition allows us to take the
brightness within one image frame, I(x, y, t), and track its 2D
displacement (u, v) in the next frame by searching for the path
satisfying the continuity equation

I(x,y, t) = I(x+ u∆t,y+ v∆t, t+∆t) . (12)

This path satisfying continuity gives

d
dt
I(x(t),y(t), t) = 0 , (13)

which by the chain rule produces

d
dt
I(x(t),y(t), t) =

∂I
∂x

dx
dt

+
∂I
∂y

dy
dt

+
∂I
∂t
dt
dt

(14)

0 = u
∂I
∂x

+ v
∂I
∂y

+
∂I
∂t

. (15)

In vector notation, this is

u·(∇ρ)+ ∂ρ/∂t= 0 . (16)

This expression is commonly called the gradient constraint
equation, giving the relationship of the displacement vector
(u, v) to the spatial and temporal derivatives of the brightness
(or gas concentration).

When imaging volumetric fluids, instead of I what we actu-
ally measure is the fluid column density ζ. If the output of

the optical flow algorithm is the fluid-concentration-weighted
average velocity û along the line of sight [92–95], as in fig-
ure 10, then we can simply multiply û with the total volume V
of fluid within a pixel to give a point-by-point estimate of the
fluid flux ϕ= ûV. Summing this over all pixels along a bound-
ary gives the total amount of fluid flow across it,

Φ=
∑
x,y

[
û(x,y)·s

]
V(x,y) ,

where s is the unit vector normal to the boundary, so that
û·s gives the projection of the gas velocity vector across the
boundary. If the boundary is closed (such as the red or blue
boundary shown in figure 9(c)) then Φ gives the estimated
overall source flux (leak rate), which is often expressed in
units of liters per minute (lpm) or grams per second (gps). An
example measurement is shown in figure 11.

6.2. Adapting optical flow algorithms to volumetric flow

In principle, adapting the optical flow algorithms originally
developed for opaque objects (i.e. (16)) to measuring volu-
metric fluids seems straightforward: we simply work with ζ
instead of I, and multiply each pixel’s column density by the
local velocity estimate to obtain themeasured flow rate. This is
close enough to the truth as to be confusing—a problem which
we will see is further reinforced by an unfortunate choice of
nomenclature.

The established method for deriving a representation of
projected fluid volumes for optical flow algorithms starts with
the continuity equation of fluid dynamics, which establishes
the conservation of mass [92, 93, 95]:

∇(ρu)+ ∂ρ/∂t= u·(∇ρ)+ ρ(∇·u)+ ∂ρ/∂t= 0 . (17)

This closely resembles the gradient constraint equation (16),
but with the addition of ρ(∇·u) — the ‘divergence term’.
Integrating (17) along the line of sight, the continuity equa-
tion becomesˆ [

u·(∇ρ)+ ρ(∇·u)+ ∂ρ

∂t

]
dz= 0 . (18)

If we consider the divergence term by itself for a moment,
we can writeˆ

ρ(∇·u)dz=
ˆ

ρ
(∂u
∂x

+
∂v
∂y

)
dz . (19)

which by use of Leibniz’ rule becomes

d
dx

ˆ z2

z1

ρudz =

ˆ z2

z1

∂

∂x
(ρu)dz+

[
ρu

]
z2

∂z2(x,y)
∂x

−
[
ρu

]
z1

∂z1(x,y)
∂x

=

ˆ z2

z1

∂

∂x
(ρu)dz=

ˆ (
ρ
∂u
∂x

+ u
∂ρ

∂x

)
dz .

Therefore, we can write this result asˆ
ρ
∂u
∂x

dz=
∂

∂x

ˆ
ρudz−

ˆ
u
∂ρ

∂x
dz .
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Figure 11. Example leak rate measurement. (a) A snapshot of one frame from a 10 s long gas detection video sequence, with the gas column
density colormap superimposed on a infrared thermal image. The concentric squares indicate possible boundaries at which to evaluate the
gas flow. (b) The pixel-by-pixel estimate of the flow velocities (shown with green arrows) superimposed on an image showing the gas
column density. (c) The time-resolved leak-rate estimate for the video sequence. The horizontal dashed line indicates the overall mean flux
17.2 L/min, while the black circle indicates the time location of the snapshots shown in (a) and (b).

A similar result follows for the vertical component of the velo-
city, v. Substituting both expressions into (19) gives
ˆ

ρ
(∂u
∂x

+
∂v
∂y

)
dz =

∂

∂x

ˆ
ρudz+

∂

∂y

ˆ
ρvdz

−
ˆ
u
∂ρ

∂x
dz−

ˆ
v
∂ρ

∂y
dz

= ∇
(
ûζ

)
−
ˆ
u·
(
∇ρ

)
dz , (20)

where û is the concentration-weighted-average velocity,

û=

´
ρudz´
ρdz

. (21)

Inserting (20) into (18), we find that the first term of (18) can-
cels out, leaving the ‘integrated continuity equation’

∇
(
ûζ

)
+

∂ζ

∂t
= 0 . (22)

Thus, the continuity equation (17) and not (16) should be used
as the basis for estimating the concentration-weighted-average
velocity û.

6.3. Compressibility vs. incompressibility

Fluid dynamics often separates fluid flow into two regimes:
compressible and incompressible flow. For gases, the com-
pressible regime generally holds for high-speed motion and

large pressure gradients. For incompressible flow the density
remains constant within a parcel of fluid that moves with the
flow velocity. The limit between these two regimes for air is
generally considered to be the point at which the ratio of the
flow velocity to the speed of sound in air (the Mach number) is
much less than 1. This limit almost always holds for the case
of imaging gas leaks, so that for gas imaging we are clearly in
the incompressible flow regime.

Section 6.2 showed that once we include the divergence
term in the continuity equation, as in (22), we have a method
for analyzing volumetric fluid flow that has been shown to
work well and provide accurate quantitative results [84, 96].
However, this has produced confusion among algorithm users,
since it is also well-known that the divergence term is negli-
gible in the incompressible regime, and these gas flows are
clearly incompressible. The difficulty arises from the fact that
we are viewing the mixing flow of two different fluids, one of
which is transparent. Whereas ‘incompressibility’ refers to the
constraint

ρgas + ρair = constant ,

the gas imaging data contains only ρgas. Satisfying incom-
pressibility for the target gas alone would mean that the con-
centration of a gas parcel does not change as its moves along
with the flow. However, since the gas diffuses into the sur-
rounding air as it propagates, the gas concentration is clearly
not constant, and so the compressible-flow regime is the appro-
priate choice.
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In order to understand the impact of ignoring this distinc-
tion, we can re-derive the expression for the weighted-average
velocity, but this time hold the divergence term to be neg-
ligible, as shown in A. What we find is that whereas (22)
(which keeps the divergence term) produces velocity estim-
ates correctly weighted by the fluid concentration along the
line of sight, the no-divergence form produces velocity estim-
ates weighted instead by the gradient of the fluid concentra-
tion along the line of sight. That is, in a naïve implementa-
tion of optical flow that ignores the divergence term (13), any
layers having larger spatial gradients, even if they have lower
amounts of gas, will play a larger role in the velocity estimate.
Additionally, any layer in which the velocity gradient is zero
(i.e. spatially uniform concentration) will have no influence
at all, even if it contains the majority of the gas in the image.
This is a disaster for accurate quantification, as the error differs
from pixel to pixel, and from frame to frame, in accordance
with the characteristics of the fluid flow. Thus, it is necessary
to work with (22) rather than (13).

7. Experimental results and comparison to the
existing state-of-the-art

Quantitative gas detection involves measurements of gas con-
centration (ppm units), gas column density (ppm.m), gas cloud
volume (L), or gas leak rate (L/min). Evaluating each of these
four measurement modes involves a different type of exper-
iment setup. Whereas evaluating the performance metrics of
a point sensor in a lab is straightforward, it can be surpris-
ingly difficult to evaluate point sensors in practical outdoor
conditions. Typical point sensor metrics include the quanti-
fication accuracy of the gas concentration, the lower limit of
concentration at which gas can be detected (the ‘sensitivity’),
and the response time. For flammable gases such as meth-
ane and propane, sensor measurement precisions are often
reported in the range of 1~100 ppm, but calibration fluctu-
ations mean that measurement accuracy is worse than this.
The sensitivities of commercial sensors, however, are gen-
erally 50~150 ppm, for response times of 10~45 s [97, 98].
Although lower numbers are always better for each of these
metrics, it is not a simple process to connect them to prac-
tical use metrics, such as the minimum size of a leak that
a sensor can detect, or the utility for safety alarms. In these
situations, the response time of the sensor plays a role, as
does the distance of the sensor from the leak, and local wind
conditions.

Evaluating gas imagers faces similar challenges. Infrared
gas imaging systems are generally stated as having sensitiv-
ities in the range of 500~5000 ppm.m for common hydrocar-
bon gases [49, 99]. Response times are generally on the order
of 1 s. While column density is the basic unit of measurement
for these systems, the addition of the gas cloud size as part of
the unit can make it difficult to compare these numbers dir-
ectly with the sensitivities of point sensors. If we assume that
the length through a typical gas cloud size is on the order of
a meter, then the sensitivities appear to be much worse than
point sensors. On the other hand, imagers detect leaks directly

at the source whereas point sensors must rely on the gas reach-
ing the location of the sensor. The concentration is much lower
at the sensor and so the corresponding sensitivities have to
be lower in order to detect the same size leak. Another com-
plication for comparing the two is that, while the sensitivit-
ies of both sensor types also suffer with increasing distance
and wind speeds [10, 100], infrared imagers have an addi-
tional loss of sensitivity on cloudy days and during twilight or
dawn. At these times, the air and exterior surface temperatures
are closer together, reducing the thermal contrast needed for
infrared measurement. Finally, wind turbulence places a fun-
damental lower bound on the sensitivity of infrared gas ima-
ging [101].

It is also important to keep in mind that the sensitivities
reported by imaging systems are typically for measurements
taken over short time intervals. For longer measurement times
(such as the 10~45 s response times ofmany point sensors), the
imaging sensitivity can be improved through time-averaging
[102]. Although very little of these results have been reported
in the literature, the author’s experience has been that one can
typically improve the sensitivity by a factor of 2~10, depend-
ing on measurement conditions. More favorable conditions
such as lowwind speeds allow for a larger improvement factor.

Response time effects can cause some unexpected beha-
vior. For example, during the hundreds of quantitative experi-
ments that the author has performed using controlled gas leaks
or bags filled with 100% gas concentrations, not once did a
wearable personal detector set off an alarm. Although the gas
concentrations were orders of magnitude beyond the sensitiv-
ity limits of these sensors, the presence of the gas was for too
short a period to allow the point sensors to respond.

In addition to time-averaging, autonomous sensors gain
another advantage by monitoring a scene repeatedly over a
long period: the increased chances of ‘lucky’ acquisition, in
which the conditions are just right for achieving the highest
sensitivity. This may happen when, for example, the wind
changes and begins pushing the gas towards the direction of
an infrared gas camera, increasing the size of the gas cloud. As
a result, imaging detection of methane clouds has been shown
for distances of over a kilometer, despite the high attenuation
of methane signals with distance due to water-vapor.

Because of the difficulties of evaluating point sensors and
gas imagers using their basic measurement units, a com-
mon metric used instead is the minimum detectable leak rate
(MDLR) of a system. In order to evaluate this metric, a detec-
tion system is deployed in a realistic measurement environ-
ment and exposed to various leak rates and various measure-
ment conditions. (Table 1 reproduces the MDLR measure-
ments recorded in [10].) A system with a low enough MDLR
under a wide range of conditions, and a corresponding low
false positive detection rate, will be useful for autonomous
implementation. In addition to the MDLR, we can also evalu-
ate the quantification accuracy of these systems, and this is one
area where imaging systems have shown capabilities that point
sensor networks have difficulty reaching. For example, in a gas
volume quantification test, we can fill a bag of known volume
with a gas mixture, and release the gas at once within the
imager’s field of view. The imaging sensor can then estimate
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Table 1. Laboratory measurements of the minimum detectable leak
rates (MDLR) in g/hr for gas imaging based on using a filtered
MWIR infrared-camera, at various wind speeds (reported in [10]).

Wind speed
Analyte 0 ms−1 0.9 ms−1 2.2 ms−1

Butane 0.72 5.8 15.9
Ethane 0.97 5.2 17.8
Methane 3.96 20.8 49.0
Propane 0.76 9.8 19.1
Ethylene 13.9 53.7 104
Propylene 4.37 15.6 59.8

Table 2. Results of methane leak rate experiments using Rebellion
Photonics’ GCI (see table 3.24 in [39]).

Viewing Actual Measured
distance flow rate leak rate Error

(m) (L/min) (L/min) (%)

17 1.67 1.85 10.8
17 10 8.95 10.5
17 16.7 17.2 3.0
17 100 81.9 18.1
30 1.67 1.50 10.2
30 10 11.0 10.0
30 16.7 16.1 3.6
30 100 84.9 15.1

the total gas volume from the gas detection video, and this res-
ult can be compared with the bag volume. While this volume-
estimation capability has been demonstrated in the field, its
accuracy has not yet been published in the literature, and so it
is not clear what the current status is of this mode.

The fourth quantificationmode is the gas leak rate, typically
measured in g/hr or L/min. Evaluating the leak rate quantific-
ation accuracy involves placing a flow-controlled leak source
into the field of view of an imaging camera (or the center of
a point sensor network). Table 2 gives a series of measure-
ments taken with the Rebellion Photonics’ GCI camera, for
tests supervised by the US Environmental Protection Agency
(EPA) [39]. Representative gas leak sizes in equipment fugit-
ive emissions are 0.038 L/min (median) or 24 L/min (mean)
[103], so the test conditions of table 2 fit into this range. The
results indicate that, under good measurement conditions of
low wind, good thermal contrast, and the leak source fully in
the field of view, the leak rate can be quantified to within an
accuracy of ± 20%.

We can also see that the quantification errors in table 2 are
actually larger than the MDLR results shown in table 1. Thus,
at the lowest gas leak levels the quantification has too much
error to be useful—while we can detect gas at the lowest levels,
a higher signal-to-noise ratio in the measurements is needed in
order to provide useful quantification.

8. Conclusions

The three gas sensing applications—LDAR, safety, and emis-
sions monitoring—each have different needs, and sensor

designers are working to fulfill these needs with ongoing
development. Point sensor networks, filtered infrared cam-
eras, and snapshot infrared spectral imagers are the three
primary detection modes that designers are competing to
develop for industrial gas detection and quantification, with
the snapshot spectral imagers being the newest among them.
While historical usage has focused primarily on detection
(the binary decision of gas ‘present’ or ‘absent’) and gas
concentration measurement, recent development has expan-
ded into new forms of quantification: gas column dens-
ity, plume volume, and leak rate. We have argued above
that imagers provide important advantages for the these new
quantifiers—especially for allowing remote estimation of leak
rate.

Autonomous gas detection systems have the potential to
reduce the labor burden for LDAR, and to improve our abil-
ity to quantify gas emissions from industrial sites. Camera-
based systems are undergoing early deployment, and show
promising benefits over the networks of point sensors that
currently dominate the industry. While camera-based ‘smart
LDAR’ initially had a reputation for being less sensitive
than point sensors, industrial users have become familiar
with their different strengths and weaknesses, and cam-
era detection has achieved widespread use in LDAR. How-
ever, camera-based systems have made fewer inroads into
safety and emissions monitoring applications, due less to
any fundamental weakness in their capabilities than to the
current immature state of algorithm development. We have
provided some preliminary testing information in section 7,
but much more testing is needed to adequately charac-
terize performance. As development of these new modes
matures in the coming years, we will likely see a widespread
change in how industry approaches safety and emissions
monitoring.

The newest detection mode, snapshot spectral ima-
ging, also provides an improved ability to discrimin-
ate among gases and to remove the effects of inter-
ferents such as steam and dust. This allows for an
improved false-detection rate that is an essential step
in the transition to making a gas sensor system truly
autonomous.

Finally, we can also keep in mind that there are ancil-
lary benefits to using infrared cameras for detection. In
addition to gas sensing itself, infrared camera data can
also be other purposes such as intruder detection, mon-
itoring equipment for defects or long-term maintenance
issues, or even tracking the liquid levels in large storage
tanks.
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Appendix. Derivation of the naïve continuity
equation

In order to understand the types and magnitudes of errors gen-
erated by ignoring the divergence term in the continuity equa-
tion (17), we will start by re-deriving the expression for the
weighted-average velocity, but this time holding the diver-
gence term to be negligible. Let us start with (18) and neg-
lecting the divergence term, which leads to

0=
ˆ (

u
∂ρ

∂x
+ v

∂ρ

∂y
+w

∂ρ

∂z
+

∂ρ

∂t

)
dz .

According to the divergence theorem, the z-component term
w∂ρ/∂z can be neglected, leaving

0=
ˆ (

u
∂ρ

∂x
+ v

∂ρ

∂y
+

∂ρ

∂t

)
dz . (23)

The third term inside the integral is simply
ˆ

∂ρ

∂t
dz=

d
dt

ˆ
ρdz=

dζ
dt

,

while the first term inside the integral, expressing horizontal
motion, has the form

ˆ
u(x,y,z, t)

∂ρ(x,y,z, t)
∂x

dz . (24)

If we approximate u(x, y, z) as a series of discrete uniform lay-
ers along z, then we can write (24) as the sum∑

i

ui(x,y, t)
[ ∂

∂x
ρi(x,y, t)

]
∆z≈ ũ

∑ ∂ρi
∂x

∆z .

where ũ is now the weighted average velocity formed by
weighting the layer velocities ui by the corresponding gradi-
ents ∂ρi/∂x. In the integral limit of infinitely thin layers,
ũ becomes the average velocity weighted by the continuous
gradient ∂ρ/∂x along z:

ˆ
u(x,y,z, t)

∂ρ(x,y,z, t)
∂x

dz= ũ(x,y, t)
∂ζ(x,y, t)

∂t
.

The same analysis follows for the vertical velocity v.
Inserting (25) and the corresponding result for v into (23)

recovers another form of integrated continuity equation

ũ
∂ζ

∂x
+ ṽ

∂ζ

∂y
+

∂ζ

∂t
= 0 . (26)

The difference between this result and (22) (which keeps the
divergence term) is that while (22) produces velocity estimates
weighted by the fluid concentration along the line of sight, (26)
produces velocity estimates weighted by the gradient of the
fluid concentration along the line of sight.
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