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ABSTRACT

Hyperspectral inpainting (HI) is a challenging inverse
problem for reconstructing the image from its incom-
plete acquisition. Unlike existing methods that solve
HI directly, this paper explores a different line of attack
by transforming HI into another inverse problem, i.e.,
decoding in hyperspectral compressed sensing (DHCS).
Since HI and DHCS both aim to output the complete
hyperspectral data, we can solve HI via DHCS, if we
are given an effective DHCS method, and if the required
input of such DHCS method can be computed from the
observable but incomplete image (OII). Computing the
required inputs of most DHCS methods is in general
very difficult due to the involved randomness of spec-
trum projection, so the DHCS method considered here
is a deterministic one recently developed for satellite
remote sensing. The motivation is that though it is hard
to recover the complete image from OII, we found that
the input of this deterministic DHCS method can be
easily computed from OIIL This simple idea of inverse
problem transform surprisingly yields completive HI
performance.

Index Terms— Inverse problem, hyperspectral im-
age, image inpainting, compressed sensing, inverse prob-
lem transform

1. INTRODUCTION

Various spectral, spatial and temporal information em-
bedded in hyperspectral images (HSI) provides valuable
analysis for us to observe the Earth’s surface, having also
found numerous interdisciplinary applications, such as
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precision agriculture, land cover classification, mineral-
ogy mapping, astronomy and bioinformatics [1-3]. Re-
cently, in the landcover classification field, spectral vari-
ability, common subspace learning (CoSpace), and cross-
modality learning framework called learnable manifold
alignment (LeMA) cooperating with graph learning are
considered for hyperspectral analysis techniques [4-6].
Typical HSI spectra range from visible over near-infrared
to shortwave infrared bands (from 0.3m to 2.5 pm), and
very recently potential applications of penetrating HSI
signal in the terahertz bands have also been explored for
chemical pellets analysis [7]. However, signals measured
by hyperspectral sensors may be corrupted by various
noise sources, including random noise and fixed-pattern
noise. Processing HSI with fixed-pattern noise (e.g., the
widely encountered striped noise in satellite imaging) re-
quires solving the hyperspectral inpainting (HI) problem,
which is an inverse problem for reconstructing the HSI
from its damaged or incompletely acquired version.

Several benchmark HI techniques have been pro-
posed, including partial differential equation based
method (PDE) [8] and sparse Bayesian dictionary learn-
ing [9]. A three-dimensional version of PDE (3D-PDE)
is also proposed for 3D data in [10], which exploits
the information of surrounding areas of some cor-
rupted regions. We should also mention the nonpara-
metric Bayesian method developed based on the Beta-
Bernoulli process factor analysis (BPFA) [9, 11]. On the
other hand, a low-rank model based method with self-
similarity regularizer, termed FastHylIn, has also been
proposed for de-striping hyperspectral data [12]. Due to
the lack of an explicit definition of self-similarity [13],
FastHyIn employs the plug-and-play learning strategy.

In this paper, we approach the HI problem by a rad-
ically new method—inverse problem transform (IPT),
which reformulates the HI inverse problem into another
inverse problem, i.e., decoding in hyperspectral com-
pressed sensing (DHCS). Though it is hard to recover
the HSI from the observable but incomplete image (OIl),
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Fig. 1. Graphical illustration of the proposed idea. The two
inverse problems (IPs) may have different input quantities, but
should have the same target output. To make the transform be-
tween the two IPs practically useful, IP 2 should be relatively
easy or better studied than IP 1, and the required input of IP 2
should be easily obtained from the input of IP 1.

we found that the input of a recent deterministic DHCS
algorithm [14] can be easily computed from OII. Note
that the output of such DHCS algorithm (with input
available) is exactly the desired output of the HI prob-
lem; specifically, both HI and DHCS aim to output the
complete HSI data. This simple idea of IPT surprisingly
yields completive HI performance, as will be demon-
strated experimentally.

Notations: I, is the n X n identity matrix. 1,, is an
n-dimensional all-one vector. ® denotes the Kronecker
product. [v]a.p is the subvector of v formed by its ath
to bth entries. R™ is the n-dimensional Euclidean space,
and R™*™ is the m x n-dimensional real-valued matrix
space. Zy 4 is the set of all positive integers. vec(-) is
the vectorization operator. The set Zy = {1,...,Z} is
defined for any given positive integer Z € Z ;.

2. INVERSE PROBLEM TRANSFORM (IPT):
CONCEPT AND APPLICATION

2.1. General Framework of IPT

Inverse problem (IP), playing a central role in signal pro-
cessing, is to compute from observable quantities (input)
the causal factors (output) that produced them. In hyper-
spectral remote sensing, there are many important IPs,
including super-resolution [15], unmixing [16, 17], in-
painting/denoising [9], and compressed sensing [14]. In
hyperspectral inpainting, for example, the input is the in-
completely acquired data, from which we want to com-
pute the desired output that is the complete hyperspectral
data cube.

Some IPs are considered relatively easy, but some are
difficult. As illustrated in Figure 1, if we transform a
challenging IP (i.e., IP 1) into an easier or well studied
IP (i.e., IP 2), it should be very helpful when the two IPs
satisfy the following three conditions:

1. (Al) IP 2 is easier, or can be more effectively
solved using available technique.

0

(A2) The input of IP 1 (observable quantity) is suf-
ficient for computing or well approximating the re-
quired input of IP 2.

3. (A3) Both IPs aim to recover the same causal fac-
tor (i.e., the same target output).

When the considered application scenario satisfies the
above three conditions/assumptions, our idea of IP trans-
form is then practically attractive.

2.2. HI Problem Definition and IPT-based Solution

Let us demonstrate the effectiveness of our idea by solv-
ing the challenging HI problem (i.e., IP 1 in this work)
by transforming it into the DHCS problem (i.e., IP 2 in
this work). We begin with defining the HI problem.

Consider an M -band HSI with L pixels x1,...,x €
RM  which can be ordered into I columns of a matrix
X 2 [xy,...,x1] € RMXL according to their acqui-
sition time [14, Section II.A]. In practice, the HSI X
may not be completely acquired; let 2 C {(m,£) | m €
In, ¢ € I} denote the set of indices of those missing
data. The HI problem is to recover X (causal factor)
from the data {[X],,, ¢ | (m,£) € €2} (observable quan-
tity), where @ 2 {(m,€) | m € Iy, £ € Iy} \ Qis
the set of indices of those successfully acquired data, and
“\” denotes set difference.

The HI method to be developed is inspired by the
following three facts, implying the three conditions dis-
cussed in Section 2.1:

1. Very recently, hyperspectral compressed sensing
has been solved by a radically new and determin-
istic approach (without relying on random projec-
tion), referred to as spatial/spectral compressed
encoder (SPACE) [14] (briefly recalled in Section
2.3), whose corresponding DHCS solver shows
state-of-the-art HSI reconstruction performance.
This matches (Al).

2. The required input of the adopted DHCS solver is
deterministic [14], enabling stable computation of
the DHCS input (i.e., input of IP 2) from the input
of IP 1 (i.e., incomplete HSI to be inpainted). This
will become clear in Section 2.3. Simply speak-
ing, the required DHCS input is just some spec-
tral/spatial averages of the hyperspectral data cube.
As it turned out, though the data is incomplete, it is
sufficient to well approximate such spectral/spatial
averages, meaning that (A2) is satisfied.



3. (A3) obviously holds true as both DHCS and HI
target to reconstruct the complete hyperspectral
data cube.

Therefore, the HI problem can be solved under the
IPT framework, by transforming it into another domain
wherein the DHCS problem has been effectively solved,
to be detailed in Section 2.3. This surprisingly yields
very good inpainting performance.

2.3. Computing the DHCS Input

Summarizing what discussed in Sections 2.1 and 2.2, the
remaining task is to compute the DHCS input [14] from
the incomplete HSI data {[X],, ¢ | (m,{) € Q}. In
this section, we briefly recall the adopted DHCS solver
[14] for self-contained purpose, followed by computing
its input arguments from the incomplete HSI.

Consider a region of interest (ROI) with L; X Lo
pixels (L = LjLs). In hyperspectral compressed sens-
ing (HCS), the compressed measurement y (observable
quantity) can be written as y = ®x, where £ vec(X)
(causal factor), and ® € R™*" is the encoding matrix
(with m < n) that is defined in [14, Equation 1] as

I, ® D

_ (L+MLp)x (ML)
P (BT®IM)6R , (D

L
r17r2

ri,79 € Zyy satisfying & 2 ¢ 7, D 217 ¢

r1’ T
RIXIW’ and B é (ILz/Tz ® 17"2) ® (ILl/Tl ® 17"1) €
RE*Ln The encoding matrix can be generalized if
higher sampling rate is allowed [14, Section III]. The
meaning of ® will become clear as we talk about its
associated decoder, which is to solve the DHCS inverse
problem defined in [14, Equation (3)], i.e.,

in which L, £ with integer-valued parameters

z = 2)
argmin ||y, — (I ® D)z|3 + |lyn — (B @ In)&|3,

where y, = [y]i.1 is the first part of y, and y, =
[Y]L+1:L+01L, is the second part.

Therefore, the HSI X (or, equivalently, x = vec(X))
can be reconstructed as Z if (Al)-(A2) discussed in
Section 2.1 are satisfied. Specifically, (Al) requires
effective solver for (2), while (A2) requires comput-
ing/approximating the input arguments (yy,, y5) of (2),
respectively discussed below:

* By carefully examining the operator (I, ® D), itis
actually a spectral averaging operator that averages
the M spectral bands of x, leading to a spectrally

downsampled panchromatic (or multispectral) im-
age y,. Though the spectral dimension is down-
sampled, the spatial information is retained in y,,,
and the first decoding term in (2) is to extract the
spatial information from y,,. Similarly, by analyz-
ing the operator (BT @ I;), it is actually a spatial
averaging operator. Specifically, the L-pixel HSI
x is partitioned into Lj, superpixels, each contain-
ing r; x 75 pixels. The operator (BT @ I,;) is
to average the r; X 79 pixel vectors in each super-
pixel of x, leading to a spatially blurred HSI y;
(containing L, blurred pixels). Though the spa-
tial dimension is blurred, the spectral information
is retained in yy,, and the second decoding term in
(2) is to extract the spectral information from yy,.
To summarize, (2) aims at reconstructing the HSI
Z from its spectrally downsampled version y,, (re-
taining spatial details) and spatially blurred version
yy, (retaining spectral details), and this decoder (2)
can be recast as a regularized coupled nonnegative
matrix factorization (CNMF) problem solved un-
der convex optimization (CO) framework, leading
to the CO-CNMF algorithm [15] that is a highly ef-
fective decoder as demonstrated in [14]. So, (A1)
is satisfied.

¢ From the above discussion, it is not difficult to
see that the (th pixel of y,, is essentially the av-
erage of the M entries in z, € RM, which can
be directly computed if x; is completely acquired.
If x4 is incomplete, such an average can still be
naturally approximated by the average of the ob-
servable quantities/entries in x, ie., {[X]mn¢ |
(m,€) € Q} |pisgiven- Similarly, as illustrated
above, each pixel in yy, is the average of r; X 7
pixelsin X = [z1, ..., ], which can be directly
computed if all the r; X ro pixels are acquired. In
case that some of the r; x ry pixels are missing,
such an average can still be performed by ignor-
ing those missing quantities. The above approxi-
mation strategies are expected to be effective due
to the spatial/spectral smoothness in typical HSI.
For example, in y,,, because the number of spectral
bands M is large when comparing to the number
of missing bands in a given pixel in typical HI sce-
nario [12, 18], the approximated averaging value
should be good given the spectral smoothness [19].
So, (A2) is satisfied.

We conclude this section by the following remark. Un-
like conventional random-projection-based HCS meth-
ods (e.g., Bernoulli/Gaussian random measurement ma-
trices), the input of the adopted deterministic DHCS



solver is relatively easy to be obtained or approximated.
We will experimentally demonstrate that the simple
approximation strategy in the proposed IPT-based HI
method (IPT-HI) works well even when there are nearly
25% incompletely acquired bands.

3. EXPERIMENTAL RESULTS

In this section, we compare the proposed IPT-HI with
some benchmark HI methods, including 3D-PDE [10],
FastHyIn [12], BPFA [9] and the low-rank matrix fac-
torization via total-variation regularization (LRTV) pro-
posed in [20], all implemented on Mathworks MATLAB
R2019a. Our experiment was conducted on an urban hy-
perspectral data, widely studied in remote sensing area
[21,22]. The studied subscene contains 210 x 210 pix-
els, each covering a spatial area of 2 x 2 m?. This Urban
HSI covers 210 spectral bands with 10 nm spectral res-
olution, corresponding to wavelengths ranging from 0.4
to 2.5 um. The channels 1-4, 76, 87, 101-111, 136-153
were removed due to dense water vapor and atmospheric
effects, and the remaining 162 channels are used in the
experiment.

Fig. 2. Pseudo-color image of the studied urban data.

For this HI experiment, we generate the data based
on a practical scenario. Owning to small relative errors
in the calibration of each detector and to the temporal
variation of the detectors’ response, a series of stripes
would appear in the along-track direction, so we corrupt
the studied HSI by serious stripes at different locations
in the first 40 bands over a total of 162 (around 25%);
cf. Figure 3(a). The corrupted HSI was fed into the stud-
ied HI methods for reconstructing the complete HSI, and
the results are respectively shown in Figures 3(b) to 3(f),
where one can see that [PT-HI has successfully recon-
structed the spatial details.

To quantitatively evaluate the reconstruction perfor-
mance, we adopt the peak signal-to-noise ratio (PSNR),
spectral angle mapper (SAM), universal image quality

(a) Corrupted Image ~ (b) 3D-PDE (c) FastHyIn

(d) LRTV (e) BPFA (f) IPT-HI

Fig. 3. Band 12 of the corrupted image (a) and its reconstruc-
tions by (b) 3D-PDE, (c) FastHylIn, (d) LRTV, (e) BPFA, and
(f) the proposed IPT-HI.

Table 1. Quantitative assessment of HI methods.

Methods | PSNR(1) SAM(]) UIQI(T) ERGAS(}) TIME
3D-PDE | 4555 05113 09978  0.7256 449
FastHyln | 4878 03978 09990 05240  7.64
LRTV | 2561 57391 07861 81284 8488
BPFA | 58.14  0.1768 09998  0.1864  6348.88
IPTHI | 5312 02939 09996 03186  4.62

index (UIQI) [23] and erreur relative globale adimen-
sionnelle de synthése (ERGAS). Rigorous definitions of
PSNR, SAM , and ERGAS can be found from [15], while
that of UIQI can be found from [13]; due to space limita-
tion, they are not recalled here. Also, computational time
(in seconds) is shown as an index of computational effi-
ciency, which is based on the computer facility equipped
with Core-i7-8700 CPU with 3.20-GHz speed and 16-GB
random access memory. Please refer to [24] for related
complexity analysis. The results are displayed in Table 1.
One can see that BPFA has strong HI performance at the
cost of significantly higher computational time, while,
among the other peer methods, the proposed IPT-HI has
best HI performance in terms of all the three indices. This
demonstrates the potential of the IPT framework.

4. CONCLUSION

We have introduced a new concept called inverse prob-
lem transform (IPT), and apply IPT to solve hyper-
spectral inpainting (HI) by transforming HI into an-
other inverse problem, i.e., decoding in hyperspectral
compressed sensing (DHCS). Though directly solving
HI using the observable but incomplete image (OII) is



challenging, it is straightforward to transform OII into
the required inputs of an effective deterministic DHCS
method, whose output is then the desired complete hy-
perspectral image. This idea of IPT surprisingly yields
superior HI results, demonstrating its potential of being
applied to solve other challenging inverse problems in
the future whenever (A1)-(A3) hold.
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