DETECTION OF LATENT POTATO LATE BLIGHT BY HYPERSPECTRAL IMAGING.
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ABSTRACT

Phytophthora infestans causes late-blight in potatoes. With-
out control P. infestans causes severe damage to the foliage
and tubers, leading to yield loss. A way to suppress the
disease without chemical control would be to remove the
primary inoculumm sources originating from infected seed
tubers or oospores in the soil. These latently diseased plants,
if detected before symptom expression and sporulation, could
be removed. To do so early detection is required. A pot-
experiment to detect latent late blight using hyperspectral
imaging was conducted. Several inoculation rates and both
spray inoculation and point inoculation were used. The spec-
tral signature of the soon to die tissue was learned which
enabled early detection of latent potato late blight, well be-
fore it was detectable by a trained human eye.

1. INTRODUCTION

Phytophthora infestans causes late-blight in potatoes. With-
out control P. infestans causes severe damage to the foliage
and tubers, leading to yield loss. To suppress the disease with-
out chemical control removal of the infected plants is an op-
tion. Therefore, it is necessary to detect infected plants before
symptom expression and sporulation of P infestans occurs.
Primary inoculum sources for potato late blight are latent in-
fected seed potatoes and soil borne inoculum in the form of
oospores. Secondary inoculum comes from infected volun-
teer potatoes and neighbouring potato crops. In the beginning
of the season primary sources are the main factor, while in the
course of the season secondary inoculum sources take over
[8]. Alternative hosts for P. infestans are of no importance
in the Netherlands. Generally, potato late blight is controlled
by applying fungicides and growing cultivars which are less
susceptible to P. infestans. To interrupt the disease cycle it
would be interesting if we could take out the primary inocu-
lum sources. Typically the first potato plants to become in-
fected in a potato crop are the ones originating from infected
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seed potatoes. If we are able to detect and remove these potato
plants before symptoms expression no transmission of inocu-
lum to neighbouring plants would occur. Consider a rough
estimation that maximum 1 in 1000 seed tubers might be in-
fected. Shattock [5] showed a transmission rate from infected
seed tuber to infected potato plants between 1.5% and 5% de-
pending on the isolate used. Ware potatoes are often planted
at a density 40000 tubers per hectare, which would mean that
potentially 2 potato plants on a hectare need to be detected.
Hands on experience suggest that the disease incidence and
transmission rate from infected tubers to plants is even lower.

To detect those few infected plants techniques should be
low cost and non-destructive. All kind of autonomous plat-
forms have been developed to enable disease detection in the
field [2]. Detection of virus infected potato plants by hy-
perspectral technology and artificial intelligence was success-
fully developed under laboratory conditions. The research of
Polder et al [3] proved that disease symptoms caused by PVY
virus could be detected with machine vision techniques us-
ing hyperspectral cameras with a precision which was almost
equal to the accuracy of an experienced crop expert under
field conditions. Similar techniques are being developed in
the cultivation of flower bulbs, especially for tulips [4]. For
potatoes an extension is foreseen for detecting bacterial blight
with hyperspectral cameras. For tomatoes P. infestans infec-
tions of tomato plants have been predicted using a spectral
range from 750 to 1350 nm. Adding a technique for early de-
tection of potato late blight would be complementary to virus
and bacteria detection in potatoes.

For this work we conducted a greenhouse experiment to
detect latent late blight using hyperspectral imaging. In 2019
some preliminary work was performed. Using a camera hav-
ing a spectral range of 400-1000 nm, images of 90 plants that
were spray inoculated with 3 different densities, were taken
on the 4 days after inoculation. There did not seem to occur
a decoloration effect on the inoculated plants, even though
most of the inoculated plants died within a week. Therefore,
another experiment was set up in which on parts of the plants
the location of the inoculation was known: so not only spray
inoculated plants were imaged but also a series of plants that
were point inoculated. The disease spread clearly from this
point allowing to find the spectral signature of the tissue that
was going to express symptoms within the following 24 hours
and die. These signatures have been tested on non-, low- and



high-inoculated plants. Allowing to detect the disease a day
before it is visible by a trained human eye. Given that in a
greenhouse the life cycle is usually shorter than in the field
these are promising results for future developments.

2. METHOD

2.1. Plant preparation

The cultivated potato plants (cv. Bintje) were grown in pots.
The pots with a content of 5 litres were filled with potting soil
and the potato tubers were placed at a depth of 10 cm. In total
80 potato plants were raised. From emergence until inocu-
lation the plants were placed in the greenhouse at Lelystad.
A P. infestans isolate belonging to the EU-13-A2 (Blue-13)
clonal lineage was used. This isolate was chosen because it
belongs to one of the most important genetic groups of P, in-
festans in Europe. The isolate was stored in liquid nitrogen
at Wageningen University & Research business unit Biolnt-
eractions & Plant Health until use. From the isolate a plate
culture was made. The inoculum suspension was made by
rinsing a one week old culture of P. infestans with water. The
inoculum density was set at approximately 10,000 zoospo-
rangia/ml and 3,000 zoosporangia /ml. Inoculation was car-
ried out by 20 spraying potato plants with approximately 10
ml of inoculum per plant of either spore suspension. Addi-
tionally, potato leaves of a fourth batch of 20 plants were in-
oculated with a droplet of 100 um of the zoosporangia sus-
pensions of 10,000 sp/ml on the leaf at 10 different spots.
On each of the plants one leaf was inoculated. Inoculation
was carried out on air dry plants. The experiment was in-
oculated on 31 March 2020, hence 1, 2 and 3 April corre-
spond to the Ist, 2nd and 3rd day after inoculation. This way
4 groups of 20 plants each were created: UTC sprayed with
water only, LOW (3000 spores/ml), HIGH (10000 spores /ml)
and POINT (10000 spores /ml). After inoculation the plants
were placed in a climate room at 18°C and high relative hu-
midity during 12 hours to allow for infection. On 1 April the
plants were transported from the climate chamber to a green-
house in Wageningen. Disease observations were carried out
four times. The percentage necrotic foliage per plant was esti-
mated, 1, 2, 3 and 6 days after inoculation. The standard area
under the disease progress curve (StAUDPC) was calculated.
The trial was layed out as a randomized block design with 20
replicates. Analysis of variance was carried out using Genstat
19th ed. Disease severity data were log10(X+1) transformed
to meet the requirement for a normal distribution and back
transformed.

2.2. Image capturing

The images were taken in a dark tent in the glasshouse using
an Imec Snapscan-vnir camera , with a spectral range of 467
to 900 nm. Illumination was provided by 6 15 Watt halogen
light bulbs that were mounted next to the camera. The camera

was placed about 30 cm above the plant facing down. At the
beginning of the day, after heating up of the halogen lights
and when the camera had been switched off the white balance
was captured with white spectralon. The plants were ordered
in blocks, each containing the four inoculation densities in a
random order. The plants were ordered in 20 blocks, each
containing the four inoculation densities in a random order.
Every day the plants were captured from block 1 to block 20,
starting around 8am and finishing measurements around 2pm.

2.3. Data analysis

Of all the blocks, 14 randomly selected were used for training
and 6 were used for testing. From the images pieces of these
leaves were taken on the same part of each leaf. In figure
2 A, an illustration of such a piece is presented. The data-
processing pipeline comprised several steps, as is described
below. A schematic overview of the steps taken is in figure 1.
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Fig. 1. The processing flow of the data analysis

The camera suffered from some noise, therefore, in a first
step the signal was smoothed using a Savitzky-Golay filter of
window length 7 and a polynomial order 3. The complex ge-
ometry of the plants cause illumination effects, which cause
spectral variability that are unrelated to the plants reaction to-
wards the P. infestans inoculation. In [6, 1] it is shown that
standard normalized variate (SNV) is a good way to compen-
sate for these illumination effects. The SNV is defined as:

X - X
SNV(X) = Sg?j;;( ), (1)

where X is a vector that the describes a pixel of the
smoothed corrected image, mean(X) and std(X) are the
mean and standard deviation of that vector, respectively.

The point inoculated plants developed clear diseased sig-
natures, with the disease spreading over the plant. Therefore,
pieces of the leaves that would show symptoms in the next 24
hours could clearly be marked. Also, part of point inoculated
leaves that still visually looked as uninfected, was sampled



under the name ok. The procedure is illustrated and explained
in figure 2.

Fig. 2. In A) the piece of the leaf at band 83 that corresponds
to 738.314nm, in B) the SNV of the original image in band
83, in C) the threshold of the SNV, in D) the erosion of B these
yellow pixels are classified as infected, F) the dilation of E)
the purple pixels here are classified as ok and E) the difference
between D) and F), these pixels are classified as ring pixels.

In this way pixels of the four classes were sampled,
with between the brackets the number of pixels from the
training and test plant respectively: infected (2036,2157)
ring(5432,3284), ok (171284,74689) and utc (247987,95549).
Where utc comprised pixels of the plants that were not inoc-
ulated. All these pixels were collected from the images taken
on the 2nd day after inoculation.

From these pixeldata the relevant bands were selected,
by taking the mean values of the ring and ok pixels and
computed the difference. Those bands for which the differ-
ence was larger than 90% of the maximal difference were
selected. In that way 14 bands were selected corresponding
to 735.571, 748.512, 751.165, 755.835, 758.651, 762.101,
764.902, 765.767, 768.447, 889.988, 891.896, 895.393,
897.454, 900.239 nm. See figure 3.

Restricting the pixels to those bands a clustering algo-
rithm was trained to classify the pixels in the four classes.
As clustering algorithm a random forest was used. To get bal-
anced training and test sets and to avoid over-fitting not all
collected pixels were used, but 5432 training pixels for each
class except infected selected at random and all infected. For
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Fig. 3. Selecting the relevant bands were the difference occurs
between the ring and the ok data.

testing the number of pixels was 3284.

The next step was to use the model to classify the pixels in
the images. The images created as such were slightly noisy so
we removed the noise by morphological closing of the pixels
that were classified as utc or ok. In figure 4 the results of the
clustering before and after noise reduction is illustrated, on
pot 78 which was a plant in the test set.

feczea

Fig. 4. Pot 78 with high inoculation dose, and phyldpi = 0.0,
phy2dpi = 0.0, phy3dpi = 25, A before noise reduction and B
after noise reduction.

Finally a statistical analysis between the percentages of
pixels falling in the classes utc and ok was performed. Those
two classes were bundled as the classifier showed a lot of
confusion between the two type of pixels. For the plants
that were not inoculated these percentages were almost al-
ways above 99%, while the percentages of the other groups
of plants showed more variance. Therefor, to test and quan-
tify the difference, a Welch test was used [7]. For this testing
we used all plants, that is, both the plants used for training the
classifier and the plants that were used for testing.



3. RESULTS p-value | low 1 april | high 1 april
utc] april 0.5552 0.3669
The inoculated potato plants were readily infected by P. infes- p-value | low 2 april | high 2 april
tans. In fact disease incidence was 100 % for the inoculated utc 2 april 0.0011 0.0073
plants, whereas the untreated control showed no symptom ex- p-value | low 3 april | high 3 april
pression. Disease severity based on the StAUDPC differed utc 3 april 0.0001 21%10°0
significantly between groups, see table I. p-value | 1 april versus 2 april | 2 april versus 3 april
Discase severity (%) utc 0.3693 0.3221
treatment | StAUDPC Tdpi 2 dpi 3 dpi 6 dpi low 0.2081 0.0019
utc 0.0a 0.0a 0.0a 0.0a 0.0a high 0.0073 6.5%10°°
high 32.5¢ 0.0a 0.6b 24.3c¢ 94.5¢
low 25.3b 0.0a 0.5b 10.5b 83.3b Table 3. The values between the different groups and days.
point 50.7d 0.1b 11.9¢ 68.2d 99.9d The values are computed using a Welch test.
F. Prob. < 0.001 < 0.001 | <0.001 | <0.001 | <0.001

Table 1. The disease severity. Dpi stands days past inocula-
tion. Values followed by the same characters are not signifi-
cantly different (P = 0.05)

At day 1 dpi symptom expression was none fore utc,
high and low and minimal for point inoculation. Both dis-
ease severity and disease incidence increased in the following
days.

The confusion matrix of the random forest algorithm
trained on the pixels in the classes utc, ok, ring, infected is
given in table 2.

The infected pixels are clearly separable from the other
pixels. However, the utc and ok are confused almost as if
they are randomly distributed between the two classes. From
the ring pixels 78% are correctly assigned, which shows that
these indeed differ from the other kind of pixels. In partic-
ular because in the selection method of ring pixels and ok
some randomness was involved; it is not exactly possible to
see which pixels correspond to tissue that is going to show
P. infestans symptoms and subsequently die in the coming 24
hours. Therefore, some confusion between ring and ok was
expected.

For the testing of the percentages pixels that were classi-
fied as ufc or ok a Welch test was performed table 3. Similar
to the more well known t-test it produces a P-value, where
a low P-value (< —0.01) corresponds to rejection of the hy-
pothesis that there is no difference between means of the two
tested groups. See figure 5 for a box-plot illustrating the dif-
ferences between the classes at the first, second and third day
after inoculation.

Predicted
utc ok ring | infected
utc 1813 | 969 | 121 30
Actual ok 1218 | 1648 | 531 3
ring 253 | 667 | 2555 210
infected 0 0 7 1914

Table 2. The confusion matrix of the random forest.
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Fig. 5. Box plots of the percentages of pixels that are classi-
fied as ring, on the first, second and third day after inocula-
tion.
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4. CONCLUSIONS

This study shows that it is possible to detect latent late blight
using close range hyper spectral imaging techniques. The
spectra in which the difference is detectable are given above.
Detection is possible two days after inoculation and one day
before it is detectable by a trained human eye. One day after
inoculation detection is not possible.

5. DISCUSSION

The objective of this study was to detect potato late blight
before symptom expression in the potato plant. The potato
plants were successfully inoculated, as a matter of fact all in-
oculated potato plants showed symptoms at the end of the ex-
periment, whereas the water treated plants showed no symp-
toms. The rate of symptom expression was depended on in-
oculation method and inoculum density. Drop inoculation led
to quicker symptom expression and higher disease severity
than inoculation with a spore suspension by misting. The
high spore density led to a higher disease severity than in-
oculation with a low spore density. The StAUDPC describes
the potato late blight epidemic in 1 digit and it shows that
the late blight epidemic was significantly more severe after
point inoculation than inoculation with a spore suspension.



In addition the late blight epidemic was also significantly de-
pended on the inoculum density. As detection technique in
this study hyperspectral imaging was chosen. It is a relatively
new, non-invasive, potentially cheap technique. Already sev-
eral studies have shown that it can be used in the field [3, 4].
As it gathers spectra impossible to detect by a human, early
signals could be expected, and were indeed found. In this ex-
periment we have shown that we can detect potato late blight
24 hours before symptom expression under greenhouse con-
ditions using a hyper spectral camera. In this experiment the
first symptoms were found by a trained human eye two days
after inoculation. Under field conditions symptom expression
is typically slower and takes 3 to 4 days depending on average
temperature in the field, which gives us potentially more time
to detect latent diseased potato plants. The question remains
whether we pick up a signal of the plant to the infection of
the pathogen or the pathogen itself. And if the plant responds
to the infection whether this response is systemically or local
around the infection point. In this study we started to address
infection of the leaves after inoculation. The reason for that is
that our first goal was to detect a response. Obviously under
field conditions we have to deal with natural infection orig-
inating from infected seed tubers, oospores or zoosporangia
blown in from elsewhere. The first expression from latent
tuber infection and oospores as inoculum sources is usually
stem blight and occasionally leaf blight. It remains a question
whether the potato plant responds and if so whether this signal
is local or systemical. In future experiments we aim to detect
potato late blight in potatoes before symptom expression after
inoculation of seed tubers.
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