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A B S T R A C T

With the increasing availability of spectral sensors and consumer-grade data processing software, a democra-
tization of imaging spectroscopy is taking place. In particular, novel lightweight 2D spectral imagers in com-
bination with UAVs are increasingly being adapted for imaging spectroscopy. In contrast to traditional line-
scanners, these sensors capture spectral information as a 2D image within every exposure. With computer vision
algorithms embedded in consumer grade software packages, these data can be processed to hyperspectral digital
surface models that hold spectral and 3D spatial information in very high resolution. To understand the spectral
signal, however, one must comprehend the complexity of the capturing and data processing process in imaging
spectroscopy with 2D imagers.

This study establishes the theoretical background to comprehend the properties of spectral data acquired with
2D imagers and investigates how different data processing schemes influence the data. To improve the inter-
pretability of a spectral signal derived for an area of interest (AOI), the specific field of view is introduced as a
concept to understand the composition of pixels and their angular properties used to characterize a specific AOI
within a remote sensing scene.

These considerations are applied to a multi-temporal field study carried out under different illumination
conditions in a barley field phenotyping experiment. It is shown that data processing significantly affects the
angular properties of the spectral data and influences the apparent spectral signature. The largest differences are
found in the red domain, where the signal differs by approximately 10% relative to a single nadir image. Even
larger differences of approximately 14% are found in comparison with ground-based non-imaging field spec-
trometer measurements. The differences are explained by investigating the interaction between the angular
properties of the data and canopy anisotropy, which are wavelength and growth stage dependent. Additionally,
it is shown that common vegetation indices cannot normalize the differences and that the retrieval of chlorophyll
is affected. In conclusion, this study helps to understand the process of imaging spectroscopy with 2D imagers
and provides recommendations for future missions.

1. Introduction

Since the definition of imaging spectroscopy by Goetz (2009) and
Goetz et al. (1985) as “the acquisition of images in hundreds of con-
tiguous, registered, spectral band,” the field has greatly developed. In
recent years, unmanned aerial vehicles (UAVs) have become an in-
creasingly used platform for photogrammetry and remote sensing
(Colomina and Molina, 2014; Pajares, 2015). Particularly when com-
bined with specialized sensors, they become powerful sensing systems
for gathering up-to-date information about vegetation. Their low flying
altitude allows them to capture data at very high spatial resolution. The
advent of small and lightweight spectral sensors has also boosted this

development for imaging spectroscopy. Spectral line scanners have
been used to detect biotic (Calderón et al., 2013) and abiotic stress,
chlorophyll content (Lucieer et al., 2014b; Malenovský et al., 2015;
Zarco-Tejada et al., 2012) and nitrogen uptake (Quemada et al., 2014).

Lately, 2D spectral imagers are also being increasingly used. These
sensors capture radiometric and spectrally characterized information as
a 2D image within every exposure (Aasen et al., 2015). In particular,
with the advent of consumer-grade software tools that incorporate re-
cent photogrammetric algorithms for structure from motion (SfM),
imaging spectroscopy with 2D imagers has become possible for a wide
audience. With SfM, the relative position and orientation of 2D images
can be estimated as long as the scene shows sufficient texture and the
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images are recorded with a sufficient overlap. This allows the joining of
these images to create a full scene. Additionally, the 3D geometry can
be reconstructed to derive digital surface models (DSMs) (Remondino
and El-Hakim, 2006; Szeliski, 2011). Thus, SfM has become the stan-
dard procedure to process 2D RGB (e.g., Bendig et al., 2015; Dandois
and Ellis, 2010; Geipel et al., 2014; Lucieer et al., 2014a; Roth and
Streit, 2017; Whitehead and Hugenholtz, 2015), as well as spectral
scenes (e.g., Aasen et al., 2015; Honkavaara et al., 2013, 2009; Jakob
et al., 2017; Näsi et al., 2015).

Still, the properties of spectral data acquired with 2D spectral im-
agers have received little attention. While Aasen et al. (2015) in-
vestigated the influence of the camera system, the interaction of dif-
ferent measurement geometries of pixels, canopy anisotropy and
illumination conditions with the data processing procedures to retrieve
full scenes from the individual images have hardly been investigated.
Further, non-imaging spectrometers are still widely used at ground
level to develop models for remote sensing applications (Milton et al.,
2009), such as biomass (Aasen et al., 2014; Gnyp et al., 2013; Hansen
and Schjoerring, 2003; Marshall and Thenkabail, 2015), LAI
(Haboudane et al., 2004) and pigments (Gitelson and Merzlyak, 1994;
Haboudane et al., 2002; Yu et al., 2014). But only very few studies
(Bareth et al., 2015; Domingues Franceschini et al., 2017; Hueni et al.,
2016; von Bueren et al., 2015) have included a dedicated comparison of
imaging with non-imaging data for vegetated areas. If data from dif-
ferent sensors should be used in an integrative approach and UAVs
should unfold their foreseen potential to bridge the gap between
ground, airplane and satellite observations, the differences between
data derived from different sensors and processed in different ways
must be understood. Additionally, UAVs are seen as tools for frequent
multi-temporal observations to gather the necessary near real-time in-
formation for precision agriculture and field-phenotyping applications
(Araus and Cairns, 2014; Berni et al., 2009; Fiorani and Schurr, 2013);
however, this also demands flights under different illumination condi-
tions. Finally, yet importantly, while the increasing availability of
spectral sensors and consumer-grade software packages carries the
potential a democratization of imaging spectroscopy—allowing re-
search groups, companies and even individuals to gather their own
data—spectral data acquisition and processing is not trivial. Thus, these
processes must be fully comprehended.

Motivated by this situation, this study investigates the workflow of
imaging spectroscopy with 2D imagers. First, a theoretical background

to understand the properties of the data and the influence of the pro-
cessing scheme on the data in the full scene is established. Second, the
common theory for imaging spectroscopy is advanced by the specific
field of view (SFOV) to comprehend how the spectral signature of an
area of interest (AOI) on the ground is composed, and how it is influ-
enced by scene generation. Third, the complex interaction of the data
properties, data processing, vegetation structure and illumination con-
ditions are investigated based on a multi-temporal study of a spring
barley experiment. Additionally, the data are compared to ground-
based non-imaging observations.

2. Imaging spectroscopy with 2D imagers

2.1. Data properties

Imaging spectroscopy with 2D imagers generates a spectral re-
presentation of a scene by recording multiple overlapping images,
which are then composed into the full scene based on a particular
processing scheme (e.g., Aasen et al., 2015; Honkavaara et al., 2013).
The exact composition depends on the flight trajectory and capturing
position of each image, as well as the processing scheme used to gen-
erate the final scene. Each image contains a representation of the
spectral properties of the objects within the sensor's field of view (FOV)
at the particular capturing position and orientation during the mea-
surement. Additionally, each image consists of individual pixels that
have their own instantaneous field of view (IFOV), and consequently,
each pixel has its own measurement geometry. Fig. 1 illustrates this for
two overlapping images.

In remote sensing, the reflectance of a surface is commonly ex-
pressed as the ratio of the flux received within the conical (I) FOV of a
sensor from the sampled surface and a lossless and Lambertian re-
ference surface in the same beam geometry under natural illumination
conditions. Thus, these measurements are precisely referred to as
hemispherical conical reflectance factors (HCRF; Schaepman-Strub
et al., 2006). This is particularly true for field spectrometers with a
rather wide FOV. The pixels of imaging spectrometers have fairly small
IFOV, which also results in a rather small measurement cone for each
pixel. Therefore, their measurements can be considered as an approx-
imation of directional measurements (Schläpfer et al., 2015) and the
resulting quantities as hemispherical directional reflectance factors
(HDRF). Eq. 1 gives the formula for the reflectance factor of a pixel (x

Fig. 1. Schematic drawing of imaging spectroscopy with
2D imagers with the field of views (FOVs) of two images
(simplification of the normal case with multiple over-
lapping images) and an instantaneous field of view (IFOV)
of one pixel. Each pixel within an image is recorded with
different angular properties. The same surface area may be
captured by several pixels with different angular properties
(as denoted by the zenith reflectance angles θr and θr′ for
one pixel. For clarity, the azimuth angles are omitted).
Additionally, the concept of the specific field of view
(SFOV) of an area of interest (AOI) on the ground within a
hyperspectral digital surface model is shown. The SFOV
describes the pixels and their angular properties that are
used to characterize an AOI (excerpt top right).
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and y denote the geographic position of this pixel) with θ as the zenith
and ϕ as the azimuth angle of the incident (i) radiation over the
hemisphere (2π) and reflected (r) radiation and the solid angle of the
IFOV (ωr), which for the HDRF case is set (close) to 0. For simplicity,
the reflectance factors measured in this study are mostly referred to as
reflectance.

R θ ϕ π θ ϕ ω( , , 2 , , , )x y i i r r r, (1)

2.2. Data processing

Every pixel at a certain geolocation (or voxel in the case of a 3D
representation) in the final scene is covered by multiple images. During
the generation of a scene, the processing scheme defines the function of
how the images are composed to the final scene; consequently, how the
spectral information of the pixels in the final scene is generated from
the pixels of the individual images (Eq. 2).

=R f R( )x y
scene

x y
images

, , , (2)

The information assigned to a pixel in the final scene is taken from
one image or multiple images. When only one image per pixel is taken
into account, each pixel within the scene has its own angular properties
defined by the measurement geometry of the individual pixel during the
acquisition of the corresponding image. When multiple images are
taken into account, pixel values with different angular properties are
composed. Thus, the angular properties of a pixel in the resulting data
product are a composition of the angular properties of the pixels of from
the individual images.

2.3. Specific field of view

Within an individual image, the measurement geometry can be
calculated as long as the IFOV, the image orientation and position, and
the surface geometry are known. To generate a scene, the images are
composed depending on the orientation and position of the individual
images defined by the flight trajectory and the capturing position. An
AOI within a scene might be covered by several pixels that are even-
tually captured in different images. Thus, the spectrum to characterize
this AOI is also composed of multiple pixels and their composition of
angular properties. In the following, the composition of pixels and their
angular properties within a scene used to characterize a specific AOI on
the ground is called the specific FOV (SFOV). Fig. 1 illustrates this
concept. The area within the scene is covered by two images (simpli-
fication of the normal case with multiple overlapping images). Within
these images, each pixel has its own angular properties resulting from
the measurement geometry. Moreover, the same area might be covered
by pixels from different images with different angular properties. De-
pending on the composition of the spectral information within the
scene, an AOI is characterized by the SFOV composed of pixels from
several images. Formally, the SFOV of an AOI can be expressed as the
mean of the reflectance quantities of a number of pixels n within the
AOI (Eq. 3). This function defines how the spectral information about
the AOI is calculated from the individual reflectance factors.

∑=

∈

specific field of view of an area of interest SFOV
n

R R: 1 ;

AOI

AOI
n

x y n x y, , ,

(3)

This becomes important when anisotropic surfaces such as plant
canopies are measured. Depending on vegetation properties such as leaf
angle, leaf area and canopy structure and their interaction with the
incident irradiance and illumination regime, light is heterogeneously
reflected to the hemisphere. Thus, the apparent reflectance perceived
by a sensing system is dependent on the measurement geometry (Qi
et al., 1995; Schaepman-Strub et al., 2006; Zhao et al., 2015). This
effect is usually described with the bidirectional reflectance distribution

function (BRDF; Nicodemus et al., 1977; Schaepman-Strub et al., 2006).
As described above, this becomes complex for imaging spectroscopy
data, since the geometric sun-surface-sensor properties are unique for
every pixel and depend on the IFOV of that specific pixel. In particular,
for imaging spectroscopy with 2D imagers, the geometrical factors must
be considered in two spatial dimensions. To understand the information
within a remote sensing scene generated by imaging spectroscopy that
is eventually measured with different measurement geometries, these
interactions must be understood.

3. Case study

Imaging spectroscopy with 2D imagers is complex and multiple ef-
fects may influence the data. To comprehend these effects, a multi-
temporal field study under different illumination conditions is de-
scribed. In the following sections, this case study and the materials and
methods to demonstrate the theoretical considerations are introduced.

3.1. Field experiment and ground data collection

The field campaigns were carried out on a barley experiment at the
University of Bonn's research station, Campus Klein-Altendorf
(50°37,51′ N; 6°59,32′ E), within the CROP.SENSe.net project (www.
cropsense.uni-bonn.de/) in 2014. In total, nine varieties of barley were
cultivated with two nitrogen treatments (40 kg/ha, 80 kg/ha) three
times. In this study, six different varieties in 32 plots were considered.
The size of each experimental plot was 3 × 7 m. Each plot was divided
into two parts: in one part, the destructive measurements were carried
out. Leaf chlorophyll concentration was estimated by collecting three
stamps with a radius of 3 mm from four leaves at the top layer of the
canopy within the destructive sampling part of each plot. These were
instantly frozen with liquid nitrogen and chlorophyll was estimated by
the DMSO method (Blanke, 1992) at the Institute of Crop Science and
Resource Conservation (INRES), University of Bonn. In the remaining
part of the plot, non-destructive remote sensing measurements were
taken. To exclude border effects and tractor tracks, a 0.8 m distance to
the plot border was utilized.

Additionally, field spectrometer measurements were carried out
with a FieldSpec3 (FS3; ASD Inc., www.asdi.com). It covers a spectral
range of 350 to 2500 nm with an FWHM of 3 nm (VNIR) to 10 nm
(SWIR). The spectra are resampled to 1 nm resolution by the software of
the manufacturer. Each measurement spatially integrates one spectrum
for the entire FOV. The FS3 was used without a fore optic, resulting in
an FOV of 25°. Measurements with the FS3 were taken with a common
measurement procedure including regular optimization and calibration
with a white Spectralon panel to adapt to illumination changes. For
details, please refer to Tilly et al. (2015). Within each plot, 10 mea-
surements were taken at six random positions.

3.2. Hyperspectral digital surface generation

3.2.1. UAV sensing system
The UHD 185-Firefly (UHD; Cubert GmbH, www.cubert-gmbh.de) is

a hyperspectral snapshot camera. Snapshot cameras are 2D spectral
imagers but distinguish themselves from other spectral sensors by re-
cording a two-dimensional hyperspectral image within a single ex-
posure and thus do not use any scanning process. The UHD records 138
spectral bands from 450 to 950 nm with a spatial resolution of 50 × 50
pixels. In total, 2500 spectra per band are recorded simultaneously. The
FWHM ranges from approximately 5 to 25 nm. Additionally, a grayscale
image with 1000 × 990 pixels is recorded simultaneously with the
hyperspectral image using the same camera through the same lens. The
FOV of the camera is 20° across- and along-track. At 30 m above ground
flying altitude, this results in a spatial ground resolution of hyper-
spectral information of approximately 20 cm and 1 cm for the grayscale
image. The IFOV for every pixel is approximately 0.4°. The camera is
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mounted on a gimbal (MK HiSight SLR2, www.mikrokopter.de), which
compensates for pitch and roll movement and therefore ensures a nadir
orientation of the camera. A single board computer controls the camera
and records the data. The camera and single board computer are carried
on a multirotor UAV (MK OktoXL 2, www.mikrokopter.de). For details
on the image capturing system and the UAV, please refer to Aasen et al.
(2015).

3.2.2. Hyperspectral snapshot camera data processing
Before each flight, a reference image is taken by placing the camera

and UAV above a white calibration panel (95% reflectance Zenith Lite).
After dark current correction, this image is used to convert the raw
digital numbers of each image taken during the flight to reflectance.
Then, a special image cube is generated as introduced by Aasen et al.
(2015). Because the grayscale and spectral image capture the same area
on the ground, they can be merged by increasing the resolution of the
spectral image with the nearest neighbor algorithm to match the gray
image's resolution. The data is then stacked in a multi-tiff. Merging the
high-resolution grayscale and low-resolution spectral image is neces-
sary as the spatial resolution of the spectral data is too low to apply the
SfM procedure. The individual image cubes are loaded into Photoscan
(Professional Edition, version 1.1.6, www.agisoft.com) and processed
with the typical workflow: after initial photo alignment, the scene is
georeferenced by GCPs measured with a differential GPS (TOPCON
Hiper Pro, www.topcon.eu) with a precision of approximately 1 cm.
Then, a dense point cloud (ultra-high) is created. At this stage, an HS
dense point cloud is created. Thus, in contrast with traditional ap-
proaches, the HS and 3D information is linked inherently throughout
the processing and no further post-processing is needed. The hyper-
spectral and 3D spatial data are exported with a spatial resolution of
5 cm. The combination of the 3D and spectral data is called a hyper-
spectral digital surface model (HS DSM) and is a representation of the
3D surface linked with hyperspectral information emitted and reflected
by the objects covered by the surface (Aasen et al., 2015). In total, 294,
198, 353 and 335 images are processed for the campaigns at 56, 70, 84
and 96 days after seeding (DAS), respectively. The measurement para-
meters and conditions are summarized in Table 1.

Photoscan allows exporting the spectral data with different pro-
cessing modes. To investigate the influence of the processing modes, the
spectral data are exported twice. The first export is performed with the
blending mode ‘disabled’ (HS DSMdis). In this mode, the spectral in-
formation is taken from the image whose center is closest to the pixel in
the composed scene. Thus, the spectra are not modified and each pixel
has the original spectral information. The second export is performed in
blending mode ‘average’ (HS DSMavg). Here, the information from all
available images is taken and averaged for the calculation of the pixels'
spectral information in the composed scene. The different processing
modes only influence the spectral data. Thus, below, the terms HS
DSMdis and HS DSMavg refer to the spectral data of the HS DSMs.

3.3. Influence of the data processing scheme

To investigate the influence of the data processing scheme, the
spectral information of the area of plot 35 at DAS 70 is extracted from
the HS DSMdis, HS DSMavg and a single image that covers the plot in a

close to nadir viewing geometry. To comprehend the composition of
images within the HS DSMdis, the position of pixels within the original
image is used. The technique was developed in Aasen et al. (2015) and
allows tracing the position of a pixel in the individual image into the
composed scene. This pixel position is given in pixels along the along-
and across-track direction of the UAV since the camera was mounted
parallel to the flight direction. Low pixel positions in the across-track
direction are on the north side of the image and their measurement
geometry is more acute to the sun (cf. Fig. 3). In the across-track di-
rection, low pixel positions are on the east side. The pixel position al-
lows the comprehension of the viewing geometry of an individual pixel.
Additionally, because the time of the flight is known (cf. Table 1) and
the scene is orthorectified, the sun's position relative to the scene can be
comprehended. Additionally, the pixel-position allows the identifica-
tion of the edges of the individual images in the HS DSMdis. Further, the
HS DSMs provide information about the canopy height. Combining the
information on the measurement geometry, canopy height and illumi-
nation helps to comprehend the differences in the data products gen-
erated by the different processing modes.

3.4. Influence on the specific field of view

The data processing technique also influences the SFOV that is used
to characterize an AOI. With the pixel tracing technique, the compo-
sition of the SFOV can be reconstructed. The pixel position is extracted
and visualized as a two-dimensional histogram showing the distribution
of pixel position within the SFOV of plot 35 at DAS 70 for the HS DSMdis

in relation to the total FOV of the UHD. Similarly, the positions of all
pixels covering the same plot are extracted from all images used for the
HS DSMavg.

To investigate the influence of different SFOVs on the spectral in-
formation, the spectra for plot 35 at DAS are extracted from the HS
DSMdis and HS DSMavg. These spectra are compared to spectral in-
formation extracted from the single nadir image of the same area and
spectral information collected with the FS3 on the ground. To show the
relative difference between the spectra, they are normalized (divided)
by the spectral information of the single image. The resulting quantities
are similar to anisotropy factors (ANIF; Sandmeier et al., 1999) but for
the entire AOI, since they express the relative difference of the spectral
information in comparison to the information extracted from the nadir
image. To explain the results, the impact on the spectral information of
the canopy cover, measurement geometry and illumination are in-
vestigated.

3.4.1. Impact of canopy cover
At DAS 56, cloudy conditions suppressed effects from direct illu-

mination. To investigate the impact of the canopy cover on the differ-
ence between the two processing modes, the spectral information of a
densely and sparsely vegetated plot are extracted from the HS DSMdis

and HS DSMavg and divided by each other. To comprehend the differ-
ences, the measurement geometries of the SFOV in the HS DSMdis and
HS DSMavg are investigated.

3.4.2. Impact of measurement geometry and illumination
To investigate the impact of the different measurement geometries

Table 1
Summary of the dates with corresponding days after seeding (DAS), parameters and environmental conditions during the UHD campaigns. Additionally, the date of the field spectrometer
(FS3) measurements and plant parameter (PP) extraction are shown.

UHD FS3 PP DAS Growth stage UHD weather Take off time Image count Sun elevation Sun azimuth

6-May 6-May 8-May 56 Stem elongation Cloudy 10:30 294 40.62° 117.1°
20-May 22-May 22-May 70 Booting Sunny 13:30 198 59.35° 180.42°
3-Jun 2-Jun 5-Jun 84 Heading Sunny 12:50 353 60.56° 160.57°
12-Jun 18-Jun 17-Jun 96 Development of fruit Sunny 12:30 335 59.97° 150.41°
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of the HS DSMdis and HS DSMavg measurement geometry on the spectral
information, the difference in the average measurement geometry per
plot is correlated with the relative difference in spectral information
retrieved from the two data products for all DAS and wavelength. For
this, the difference between the average position of all pixels within the
SFOV for all plots in the HS DSMdis and HS DSMavg is calculated. A
negative difference shows that the information in the HS DSMdis has
been recorded from a more acute angle to the incoming beams of the
sun and vice versa. Additionally, the ratio of the reflectance between
the spectral information of the HS DSMdis and HS DSMavg is calculated
for all plots. A ratio larger than 1 shows that the apparent reflectance in
the HS DSMdis is greater than in the HS DSMavg. For each wavelength,
this ratio is correlated with the difference in average pixel position for
all wavelength and DAS.

3.5. Radiometric calibration

Due to the mechanical instability of the camera prototype and
several maintenance issues during the year 2014, the camera could not
be radiometrically calibrated in a general manner. Additionally, the
camera has no irradiance sensor. Thus, a calibration procedure similar
to field spectrometer measurements but also common for UAV spectral
sampling (Aasen et al., 2015; Bareth et al., 2015; Suomalainen et al.,
2014) was applied. Before each flight, the UHD was pointed towards a
reference panel to measure the down-welling solar irradiance on the
panel. Then, this measurement was used to transform the DN values to
reflectance; however, this type of calibration is prone to errors. At DAS
56, a significant offset in reflectance is noticed compared to the other
dates (cf. Fig. 10) that cannot be explained by plant growth. Because
the sky was clouded on this date, the influence of the illumination
conditions during the calibration is investigated.

The fiber of the FS3 is mounted on a tripod 50 cm above a Zenith
Lite calibration panel and the reflected radiation is measured. The UAV
is then placed right above the downwards-facing fiber in a similar po-
sition to that used during the in-field calibration and another mea-
surement is taken. The difference represents the influence of the UAV
on the radiation reflected from the panel. Accordingly, a sensing system
mounted below the UAV will also perceive the influenced radiation
instead of the real radiation. Consequently, a reference image taken
under these conditions would influence all measurements. To estimate
the influence of the illumination conditions, the measurements are
carried out under clear sky and cloudy conditions. In both cases, no
direct shadow is cast on the reference panel. Under the clear sky con-
ditions, additional measurements are taken with the person holding the
UAV standing in and perpendicular to the principal plane of the sun.

3.6. Comparison to proximal non-imaging and destructive measurements

To compare the imaging to the non-imaging data, all pixels within
the non-destructive part of the plot (c.f. Fig. 2) are average and a linear
regression model is established with the non-imaging FS3 data for each
wavelength and date. Additionally, the common VIs NDVI (Rouse et al.,
1974), TCARI/OSAVI (Haboudane et al., 2002), PRI (Gamon et al.,
1992) and REIP (Guyot et al., 1988), often used for chlorophyll esti-
mation, are calculated for the HS DSM and FS3 data and compared. The
formula with the spectral bands adapted to the UHD are found in
Table 2.

Additionally, models of the VIs and the destructively measured
chlorophyll values for single and the multiple-dates DAS 70–96 and
84–96 are established. Only plots that are entirely covered by the HS
DSM are considered in the analysis. The analysis is carried out with R (R
Core Team, 2016).

4. Results and discussion

4.1. Influence of the data processing scheme

The data processing scheme defines how the spectral data are
composed within the HS DSM. Fig. 3 visualizes the data resulting from
different processing modes. Fig. 3(A) shows the spectral information
taken from only a single image at 670 nm. Fig. 3(B) shows the spectral
information from the HS DSMavg and Fig. 3(C) the HS DSMdis. Fig. 3(D)
demonstrates the composition of the HS DSMdis by showing the along-
track position of the pixels within the original images and thus high-
lights the edges of these images. Fig. 3(E) shows the average plant
height within 5 by 5 cm squares. Additionally, the drawing in the
bottom left schematically demonstrates the measurement geometries
within an image with respect to the pixel's position. In the following
section, the difference in the data generated by the different processing
modes will be discussed based on the theoretical framework introduced
in Section 2. Section 4.2 will than quantify the impact on the hyper-
spectral data.

In the south-west part of the plot (red edging, Fig. 3D), the same
reflection pattern can be seen in the single image and the HS DSMdis

(Fig. 3A and C). Here, the spectral information of the single image is
used in the HS DSMdis (image 2, c.f. Fig. 3D). In other regions of the
plot, edges are visible in the spectral data of HS DSMdis that do not align
with the single image. These occur at the transition between the images.
In particular, they are visible at the edges of images 1 and 3 (Fig. 3C and
D). During the flight at DAS 70, the sun had an elevation of approxi-
mately 59° and an azimuth angle of 180°. Thus, the along-track direc-
tion of the images was approximately aligned with the solar principal
plane. Here, pixels with a lower pixel position value in the y-direction
were captured with a more acute angle to the incoming radiation of the
sun, closer to the reflection hotspot, resulting in higher reflectance than
pixels with a higher pixel position value. In the HS DSMavg, these edges
are not visible (Fig. 3B) due to the averaging performed during the
processing for this data product. Still, a pattern is visible within the
plot. The pattern is similar both to the data of the single image and the
HS DSMdis but is less pronounced. Overall, the reflectance to the south
of the plot is higher than to the north, which can be explained by the
shading of the higher canopy elements in the middle of the plot.

Although the pattern in the single image and the HS DSMavg look
most reasonable when compared to the pattern of the canopy height, all
processing schemes have their advantages and drawbacks. The single
image is chosen such that the viewing geometry is almost nadir and the
plot covers only a small portion of the entire image. Aasen (2016b)
showed that within a single image of a 2D imager, BRDF effects may
have a strong influence. Consequently, although not directly visible in
the image, the information may still be influenced by the different
measurement geometries of the pixels. In particular, this effect in-
creases when the AOI covers a larger part of the image. Additionally,
nadir looking images may not be available for all regions of interest
within a scene. While the averaging in the HS DSMavg may equalize
BRDF effects to a certain degree (similar to larger FOV of point spec-
trometers (Zhao et al., 2015)), it introduces additional uncertainty as
long as it is not possible to trace which parts of which images were
overlapping and thus averaged. Although an approximately uniform
flying speed and along-track image overlap can be assumed, it is not
guaranteed that similar parts overlapped for all areas of the scene. This
might influence the retrieved spectral data, as will be seen later in
Section 4.2. Within the HS DSMdis, stronger angular effects are apparent
in the composed scene and may influence the results of retrieval
methods; however, they can still be traced based on the pixel position
and included in the analysis.

Overall, these results demonstrate that differences are clearly visible
between the processing modes, but their interpretation is not trivial as
angular effects, the structure of the canopy and the image composition
interact. Additionally, they might have a significant impact on the data
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product. Rasmussen et al. (2016) found that angular effects introduce
variations greater than variations between different crop treatments.
Currently, illumination differences resulting from different viewing
geometries within an image mosaic are often ignored (Koukal et al.,
2014). Additionally, the UAV trajectory might differ from flight to flight
due to wind or other navigational uncertainties. Further, environmental
effects such as the position of the sun might also vary between ob-
servations. Thus, pixel-wise information about the angular properties,
the signal quality and the environmental conditions during the acqui-
sition should be incorporated as a standard in the metadata for scien-
tific grade remote sensing data. Additionally, reliable BRDF correction
routines must be developed for 2D imagers. Because incorporating
high-resolution structural information is seen as the way forward for
these corrections (Weyermann et al., 2014) the 3D data contained
within the HS DSMs are potentially suited for that use.

4.2. Influence on the specific field of view

The SFOV defines the composition of pixels and their angular
properties that are used to characterize an AOI. Fig. 4 shows the FOV of
the UHD (orange), FS3 (gray) and the SFOV for plot 35 at DAS 70 with
the processing mode blending disabled (HS DSMdis, Fig. 4C) and
blending average (HS DSMavg Fig. 4D). The SFOV of the single image is
marked as image 2 in Fig. 4C.

Non-imaging spectrometers such as the FS3 average the spectral
signature of all objects within their FOV almost equally (Mac Arthur
et al., 2012). The FOV of the UHD is composed by the individual IFOVs
of every pixel. The UHD and FS3 have a similar FOV. The FS3 has a
circular FOV of approximately 25°, while the UHD has rectangular FOV
of approximately 20°. Thus, applied from the same height, both in-
struments cover a similar area. Additionally, if all pixels of the UHD
were averaged, the integration of the solid angles of the IFOVs
(=SFOV) would compose an FOV similar to the FS3, and therefore the
angular properties of the resulting spectra would also be similar
(Fig. 4B).

When the UHD is applied on a UAV, the footprint increases with as
the flight altitude increases. At the same time, the AOI is covered by a
smaller part of the FOV and consequently, the SFOV also changes. In an
HS DSM, the AOI might be covered by multiple images (cf. Section 2).
Thus, the SFOV also spans multiple images. Because the processing
mode defines how the individual images are composed, it also influ-
ences the SFOV and consequently the spectral information. For the
processing mode blending ‘disabled,’ only the non-overlapping parts of
a few images are used. Thus, the SFOV also only uses a small part of the
entire FOV of the UHD (Fig. 4A and C). When the blending mode
‘average’ is used, the information from all images that cover the AOI is
used in the SFOV. Thus, a larger part of the FOV of the UHD is used. In

Fig. 2. RGB orthomosaic of the field experiment at 70 days
after seeding. The black squares mark the experimental
plots. Destructive sampling was carried out in the colored
areas. The color relates to the different genotypes. (For
interpretation of the references to color in this figure le-
gend, the reader is referred to the web version of this ar-
ticle.)
(Modified from Aasen, 2016a).

Table 2
Formula for the vegetation indices with references used in this study. The wavelengths are
slightly adapted to the available wavelength of the UHD.

VI Formula Reference

NDVI −

+

R R
R R

( )
( )

798 670

798 670

Rouse et al.
(1974)

TCARI/
OSA-
VI

− − −∗ ∗ ∗

∗ −
+ +

( )( )R R R R3 ( ) 0. 2 ( ) R
R

R R
R R

702 670 702 550 702
670

1 . 16 ( 798 670)
( 798 670 0.16)

Haboudane
et al. (2002)

PRI −

+

R R
R R

( )
( )

550 530

550 530

Gamon et al.
(1992)

REIP
+

−

−
∗

+ R
R R

700 40
R R( 670 778)

2 702

738 702

Guyot et al.
(1988)
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addition, some areas of the FOV are used twice (Fig. 4D). The different
composition of the SFOV also influences the spectral information.

Fig. 5 shows the spectra extracted from the two data products and
the FS3 in comparison to a single nadir image. In particular, differences
become visible when the spectral information is normalized to ANIF by
the nadir information. The ANIF of the HS DSMdis, HS DSMavg and FS3
show a similar pattern. From the green to the red spectral region at
682 nm, the ANIF decreases to 0.96 and 0.89 for the HS DSMdis and HS
DSMavg, respectively. In the red-edge, the ANIF increases before it
reaches a level close to 1 in the NIR, which indicates a similar re-
flectance compared to the single image. The shape is most pronounced
for the FS3 (ANIF = 0.83 at 682 nm), followed by the HS DSMavg.
While the FS3 crosses the two other ANIF curves in the red-edge and
even shows an ANIF above 1 in the red-edge towards the NIR, the ANIF
of HS DSMavg stays below the ANIF of the HS DSMdis.

To explain the difference between the different spectra from the
data products and devices, the geometric composition of the SFOV of
the HS DSMs and FOV of the FS3 must be investigated. In particular, the
measurement geometry and size of the integrated solid angle of the
SFOV interact with the illumination conditions and the canopy struc-
ture, including canopy cover.

4.2.1. Impact of canopy cover
Diffuse illumination conditions were present at DAS 56 and thus,

the effects resulting from direct illumination had only a minor impact
on the difference of the apparent reflectance. Still, differences also
appeared under these conditions. Fig. 6 (left) shows a plot with sparse
and dense vegetation and the ratio of the spectra derived from the HS
DSMavg and HS DSMdis from these plots. The comparison of the spectra
derived from the two data products reveals wavelength-dependent
differences with a shape similar to those in Fig. 5. To comprehend these
results, one must examine the beam geometries within the SFOVs.

The SFOVs of the single image comprises only few pixels with a
measurement geometry close to nadir (Fig. 7A). The SFOV from the HS
DSMdis already comprises more pixels with measurement geometries
further from nadir (Fig. 7B). The spectrum derived from the HS DSMavg

comprises even more off-nadir information as it almost uses the full 20°
FOV of the UHD in the along-track direction (Fig. 7C). The integrated
information of the non-imaging FS3 captures information within the
full 25° FOV of the device (c.f. Fig. 4). This influences the retrieved
spectrum, as shown in the data of DAS 56.

Measurements with a close-to-nadir measurement geometry have an
increased proportion of soil signature compared to oblique

Fig. 3. Reflectance of one plot at 670 nm of plot 35 at DAS
70 as seen within a the single image (A), the HS DSMavg (B),
the HS DSMdis (C) and a visualization of the along-track
pixel position within the original images used to compose
the HS DSMdis (D). Additionally, the plant height (E) and a
schematic drawing of the relationship between the along-
track pixel position and measurement geometries are
shown (bottom left). (For interpretation of the references to
color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 4. Comparison of the 25° FOV of the FS3 (gray) and 20° of the UHD (orange) and their footprint from the same height (A,B). For plot 4 at DAS 70, the specific field of view (SFOV)
within the hyperspectral digital surface for the processing mode ‘disabled’ (C) and (D) is shown in blue. Overlapping IFOVs are colored dark blue. In blending mode ‘disabled,’ the plot is
characterized by spectral information from three images. Additionally, the resulting along-track SFOV is shown in light blue (A). In blending mode ‘average,’ the spectral information
from nine images is taken into account and almost the entire along-track FOV of the UHD is used. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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measurements. Compared to green vegetation, soil has a higher re-
flectance in the VIS and lower reflectance in NIR. Thus, measurements
close to nadir have a higher reflectance in the VIS. In the red-edge re-
gion, this changes, and in the NIR, the soil influence decreases the re-
flectance (Burkart et al., 2015; Schaepman-Strub et al., 2006; Verrelst
et al., 2008; Zhao et al., 2015).

These effects explain the general shape of the reflectance ratios seen
in Fig. 6. Because the SFOV in the HS DSMdis is situated around the
nadir and is narrower compared to the SFOV of the data extracted from

the HS DSMavg, relatively more beams from the soil are received. On the
other hand, due to the wider SFOV of the HS DSMavg, more beams from
plant material are represented in the HS DSMavg (cf. Fig. 7). The more
soil signature is contained in the spectrum, the higher the reflectance in
the red, lower at the NIR shoulder and the flatter the red-edge. Thus,
the ratio between HS DSMavg and HS DSMdis is low in the red and in-
creases towards the NIR. In denser canopies, soil signature only reaches
the sensor from the most nadir beams. Thus, the spectrum extracted
from the HS DSMavg contains only minor soil information. Because the
HS DSMdis views close to nadir into the canopy, the difference between
the information contained in the HS DSMavg and HS DSMdis increases,
as seen in the ratio for plot 23 (Fig. 6).

4.2.2. Impact of measurement geometry and illumination
The influence of the measurement geometry varies with the illu-

mination conditions and canopy structure. Fig. 8 shows the correlation
between the difference of the average pixel position of the SFOV per
plot of the HS DSMdis and HS DSMavg and the apparent reflectance for
the four campaigns.

For the along-track direction, most correlations are negative. This
aligns with the theory since a positive difference of the pixel position
within the HS DSMdis corresponds to information that has been re-
corded at a more acute angle to the sun (closer to the hotspot, resulting
in a higher apparent reflectance) than the HS DSMavg data, and vice
versa. In most parts of the VIS, correlations between 0.6 < R < 0.86
are found for the along-track pixel position for DAS 70 to 84. The
strongest correlations are found at DAS 70 and decrease slightly with
the growth stage. In the NIR, the correlations decrease towards the later
growth stages. This results from the denser canopy in the later growth
stages (and tilting of the stems due to the development of ears at DAS
96), which results in more scattering in the NIR and a decrease of BRDF
effects. This aligns with modeled (Küster, 2011) and empirical (Roosjen
et al., 2016) results that show that for barley in the growth stages after
stem elongation, the pronunciation of BRDF in the NIR decreases. At
DAS 56, a pattern different to the other DAS patterns with poor cor-
relations is found, particularly in the VIS. At this date, cloudy diffuse
illumination conditions were present, which generally reduce BRDF
effects and remove their directionality to a radial gradient around the
nadir resulting from the soil influence (Schaepman-Strub et al., 2006).

The correlations with the across-track pixel position are rather weak
for all DAS for two reasons. First, BRDF effects are less pronounced in
the direction orthogonal to the principal plane of the sun. Second, the
BRDF is symmetric to the principal plane (Küster, 2011). Since the plots
were aligned in this direction, the symmetry of the BRDF normalized
the differences in the across-track direction.

These results, together with the results of Section 4.2.1, explain
what is exemplarily shown for plot 35 at DAS 70 (cf. Fig. 5). Based on
the considerations in Section 4.2.1, the apparent reflectance in the NIR
in the HS DSMdis and HS DSMavg should have been higher than in the
single image; additionally, the ANIF of the HS DSMavg should have been

Fig. 5. Comparison of the spectra extracted from the AOI of plot 35, DAS 70 (cf. Fig. 4)
from a single image (black), the HS DSM with blending mode ‘disabled’ (HS DSMdis,
green) and ‘average’ (HS DSMavg, red) and the FS3 (blue). Additionally, anisotropy factors
of the difference cases (ANIF; the reflectance normalized by the spectrum extracted from
the single nadir looking image) is shown with the same color-coding (bottom). (For in-
terpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 6. RGB image of plot 22 and plot 23 (histogram stretch
was applied to enhance the visible differences between soil
and plants) and the ratio of the spectrum derived from the
HS DSMdis and HS DSMavg for the two plots.
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higher in the NIR than the ANIF of the HS DSMdis. In combination with
the distribution of the images of this plot shown in Fig. 4(D) and the
impact of the measurement geometry shown in this chapter, the effects
can be comprehended. The images were captured such that the along-
track axis (and thus the along-track pixel position gradient) was facing
north to south. During the flight at DAS 70, more images of plot 35 were
captured from a sun averted measurement geometry (cf. Fig. 4D), and
consequently, they contained lower apparent reflectance (for a visua-
lization of the differences in reflectance resulting from the different
measurement geometries for this particular plot, please refer to Aasen,
2016b). Because all these images are averaged in the HS DSMavg, the
apparent reflectance is relatively decreased in comparison with the
single image and the HS DSMdis.

These effects must be kept in mind when data from different sensors
flown at different altitudes are compared. In comparison with high-
flying platforms, the variety of viewing geometries within a SFOV of an
AOI might differ considerably more in data from low-flying imaging
systems, since a larger part of the FOV are used to cover the same area.
This is important because it has been shown that angular effects in-
fluence the retrieval of vegetation properties (Burkart et al., 2015;
Verrelst et al., 2008). In general, it can be assumed that an integration
over a wider FOV or SFOV is more robust against angular effects (Zhao
et al., 2015). On the other hand, well-defined angular properties offer
the opportunity to derive additional information about the surface
(Schaepman, 2007). In particular, when 2D imagers capture over-
lapping images to derive HS DSMs, the same area is measured from
multiple positions. Thus, 2D imagers provide an optimal tool for the
derivation of multi-angular properties (Aasen, 2016b; Hakala et al.,
2010; Honkavaara et al., 2014; Koukal et al., 2014). Future studies
should exploit this opportunity. At the same time, the gained under-
standing should be used to further develop and adapt existing methods
for the correction of angular effects (Schläpfer et al., 2015). In the fu-
ture, the high-resolution 3D information contained in HS DSMs could
support this correction.

Further, these results show that spectral remote sensing can also
benefit from cloudy (diffuse) conditions since BRDF effects are reduced.
So far, this has received little attention but it is particularly interesting
in the context of UAVs since they can gather data below the clouds.

Under these conditions, however, the irradiance field is different and it
has been shown that this impacts the retrieval of biophysical properties
(Bartlett et al., 1998; Damm et al., 2015).

4.3. Radiometric calibration conditions

The reflectance at DAS 56 within the HS DSM shows an overall
increase in reflectance compared to the field spectrometer measure-
ments. The effects discussed so far cannot explain this difference. On
this date, cloudy conditions were present. Fig. 9 shows the reflection of
a reference panel under clouded and clear sky conditions when the UAV
is held above the panel by a person standing within and perpendicular
to the principal plane of the sun.

Under cloudy conditions, the reflectance of the panel is reduced by
approximately 14%. Depending on the cloud cover and the distance of
the panel to the UAV, this value changes (not shown here). Clouds
change the illumination regime from a mostly directed illumination to
diffuse illumination conditions, where light is irradiated approximately

Fig. 7. Schematic drawing of the specific field of view (blue) within a single image (A), HS DSMdis (B) and HS DSMavg (C) in relation to the FOV of the UHD (yellow). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Correlation (R) between the difference of the averaged
along-track (left) and across-track (right) pixel position of HS
DSMdis and HS DSMavg and the ratio of the apparent reflectance
derived from both data products for the four days after seeding
(DAS).

Fig. 9. Measurements of a Zenith Light reference panel under clear sky conditions (re-
ference), with a person behind the panel in the principal plane (person pp), person per-
pendicular to the principal plane (person), with a UAV above the panel held by a person
within the principal plane (UAV pp) and a UAV held from a person perpendicular to the
principal plane (UAV). Additionally, a measurement under cloudy conditions with a UAV
held by a person within the principal plane relative to a measurement under cloudy
conditions without obstacles (cloudy pp).
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homogeneously from the whole hemisphere. When a UAV and a person
holding the UAV cover large parts of the hemisphere, the illumination
of the panel is significantly reduced; so, however, is the position of the
person holding the UAV. When the person holding the UAV is standing
within the principal plane, the reflection in the VIS is decreased by up
to 4% (at 466 nm). In the NIR, the reflectance is increased by 8.5%.
When the person stands perpendicular to the principal plane, the in-
fluence is significantly reduced in the NIR to an increase of only 1.9%
compared to the case without obstacles. In the VIS, it is slightly reduced
to 3.4%. The presence of the UAV only changes the influence slightly.
When the person stands in the principal plane, the UAV even reduces
the difference in the pure reflectance of the reference panel. Similar to
the clouded case, the decrease in the VIS can be attributed to the
covering of the hemisphere. Because the hemisphere mostly scatters
blue light under clear sky conditions, the decrease is most pronounced
in this region. As the UAV increases the covered area, the influence is
increased. In the NIR, the person and the UAV are scattering light back
on the panel. Thus, at approximately 670 nm, the reflectance increased.
The slight difference of approximately 1% in the NIR between the case
with and without the UAV is most likely explained due to slight dif-
ferences in the distance to the panel. Similar results are found by Kimes
et al. (1983), who reported errors from 2 to 18% in field spectrometer
measurements depending on the distance and position of a person close
to a reference and the color of the clothing worn by the operator.

The pre-flight calibration procedure used in this study is a com-
monly used one in UAV remote sensing and field spectroscopy. The
demonstrated calibration issue has great implications for the data
quality. Since the measurement of the reference panel is used to
transform all image cubes to reflectance, errors will propagate into
every measurement. Worse, this error cannot be quantified afterwards.
Therefore, data calibrated with this approach cannot be directly com-
pared to data captured under different illumination conditions, as will
be seen in Section 4.4 for DAS 56. On the other hand, within one
campaign, the data stay consistent because an eventual offset influences
all measurements. Consequently, the issue does not affect most of the
results of this study. Due to the knowledge of these effects, the greatest
care was taken to minimize their impact during the calibration proce-
dure. Additionally, both the HS DSMdis and HS DSMavg would be af-
fected in the same way. Thus, the results of the comparison between
both data products are not affected by this issue. Still, since the FS3
measurements have been calibrated separately and (as in every other
study) the same issue might bias them, the comparison to the UHD data
(Fig. 5) is afflicted by some uncertainty.

In the future, this calibration method should be avoided. For UAVs,
robust methods based on laboratory calibrations, characterized ground
targets (e.g., Lucieer et al., 2014b), and the ability to adapt to changing
illumination conditions (e.g., Burkart et al., 2015) are necessary to
derive more robust scientific grade data. This is particularly important
when multi-temporal surveys under different illumination conditions
are carried out; however, sensing systems are needed that can record
the incident radiation.

4.4. Comparison to proximal non-imaging and destructive ground
measurements

The previous sections outlined systematic differences between data
captured by imaging and non-imaging devices as well as the influence
of different processing modes. In the following sections, the impacts of
these differences are shown for the entire set of case study data.

Fig. 10 shows maps of the REIP for DAS 56 to 96 calculated from the
HS DSMdis. For all dates, differences between different cultivars and
fertilizer levels and within plots can be seen. For DAS 70 to 96, the
differences between the cultivars become more pronounced. Ad-
ditionally, in some plots, the positions of the destructive measurements
from the previous dates can be identified (e.g., square with low REIP
value in the destructive measurement part of plot 10 at DAS 70) as well

as crop damage due to rabbit burrows (DAS 70, in the middle of the plot
south to plot 54). In DAS 96, the lodging of some plots is visible due to
very low REIP values (unmarked plots 6, 17, 27, 36, 44, 53).

The effects resulting from the data processing, however, can also be
seen. In DAS 84, the influence of the transition of the images of two
flight lines is apparent in the second row from the west, while most
other transitions are not as obvious. Here, the images are shifted for
approximately half an image in the along-track direction. Thus, the
measurement geometries of adjacent pixels are different and BRDF ef-
fects become visible (cf. Sections 4.1 and 4.2). Similarly, in plot 4, 35
and between plot 30 and 32 at DAS 70, edges are visible within the
plots and can be explained by the same phenomenon. At DAS 56, the
low REIP values cannot be explained by plant physiological reasons or
by data processing. Here, the bias of the calibration procedure (cf.
Section 4.3) under cloudy conditions becomes visible. In the following
section, the imaging data are compared to non-imaging spectral ground
measurements.

4.4.1. Non-imaging spectral ground measurements
In coordination with UAV overflights, non-imaging FS3 measure-

ments were taken. Fig. 11 shows the coefficient of determination of FS3
and HS DSMdis data (A) and the slope of the relationship (B). The
scatterplots for six exemplary wavelengths can be found in the appendix
(Fig. A.1). Additionally, Fig. 11 shows scatterplots of the four VIs NDVI
(C), TCARI/OSAVI (D), REIP (E) and PRI (F) retrieved from the FS3 and
HS DSMdis data.

In the VIS domain, the spectral information from the FS3 and HS
DSMdis are well correlated at DAS 84 and 96. At DAS 70, the correla-
tions are weaker but still highly significant (p < 0.001). In the NIR
domain, the correlations are lower. For DAS 84 and 96, they are still
highly significant (p < 0.001) and for DAS 70, the correlations are
lower and less significant (p < 0.07).

At DAS 70, the measurements of the FS3 were carried out two days
after the UHD overflights. On this day, slight, fast-changing cirrus
clouds were present that can affect the spectral measurements and
lower the correlations between the datasets. The general decrease in the
correlation in the NIR can be explained by the bidirectional reflectance
function of barley. In the VIS (at 670 nm), the reflectance is almost
linearly decreasing from the hotspot to the nadir along the principal
plane (Küster, 2011, Appendix), while in the NIR (at 800 nm), there is
variation around nadir. Thus, the different SFOVs of the FS3 and HS
DSMdis have a lower impact in the VIS than in the NIR. The differences
between the VIS and NIR also result in different slopes of the re-
lationship (Fig. 11B). A similar slope for the VIS and NIR domain is only
found at DAS 96, where ears had already emerged and were tilted
above the canopy, and the plants were already in the process of se-
nescence, which reduced the impact of the different SFOV composi-
tions.

For DAS 56, significant (p < 0.05) correlations are only found in
the NIR. The correlations were most likely affected by the fluctuations
in incident radiation between calibrations and measurements. Due to
the small differences in reflectance in the VIS, this affects the VIS more
than the NIR due to the larger absolute differences in reflectance be-
tween the plots in the NIR. Because several non-traceable influences
interacted at DAS 56, the results of the comparison of the FS3 and HS
DSM data must still be handled with care at this date.

The wavelength depended differences between the imaging and
non-imaging data also impact the VIs (Fig. 11, Table 3). For most DAS,
the NDVI is lower for the HS DSMdis data. Here, the higher proportion of
soil in the HS DSMdis signal decreases the VI values. At DAS 96, the FS3
measurements were carried out six days later than the UHD measure-
ments. Thus, the advanced senescence at the time reduced the NDVI
values of the FS3. For DAS 56, the NDVI is the only VI that can com-
pensate for the calibration bias.

For the REIP, the relationships between the FS3 and HS DSMdis are
similar for all DAS but DAS 56. The higher REIP values derived from HS
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DSMdis data can be explained by the lower proportion of plant sig-
natures in the HS DSM data due to the different viewing geometries
within the SFOVs. At DAS 56, the relative overestimation of the re-
flectance due to the calibration bias of the UHD (c.f. Section 4.3) in-
creases the absolute reflectance in higher wavelengths more than in
lower wavelengths. Thus, the slope between the red and NIR increases
and the REIP decreases.

For the TCARI/OSAVI, the FS3 values are higher than those from
the HS DSMdis for DAS 70 to 96. Because the TCARI/OSAVI is sensitive
to chlorophyll content (Haboudane et al., 2002), this can also be ex-
plained by the lower proportion of plant signatures in the HS DSMdis

data compared to the FS3 data.
The relationships between the FS3 and HS DSMdis PRI differ for each

DAS and show low R2. The two wavelengths used in the PRI (550, 530)
have different sensitivities to a changing SFOV (c.f. Fig. 5) and vege-
tation cover (c.f. Fig. 6). Thus, the PRI is very sensitive to differences in
the SFOV and reacts differently in different growth stages.

Differences in the data acquired from the same area but with dif-
ferent sensors have been found earlier; however, this was mostly at-
tributed to non-sufficient (cross-) calibrations of the sensing system
(Bareth et al., 2015; von Bueren et al., 2015). The results of this study
suggest that these differences also result from the different angular
properties of the data used to characterize an AOI (=SFOV) and that
this influence is wavelength and growth stage dependent.

4.4.2. Destructive chlorophyll measurements
In Table 4, the coefficient of determination for the estimation of

chlorophyll with different VIs from the data of the HS DSMs and the FS3
is shown. For DAS 56 and 70, low R2 are found for both the UHD and
the FS3 data. In addition to the biased calibration of the UHD, this may
be caused by the different illumination conditions at DAS 56, which
also affects the retrieval of biophysical properties (Bartlett et al., 1998;
Damm et al., 2015). For DAS 84 and 96, R2 between 0.41 and 0.61 are
found with the REIP and an R2 of approximately 0.50 is achieved with

Fig. 10. Maps of the red-edge inflection point (REIP) de-
rived from the hyperspectral digital surface model of DAS
56, 70, 84 and 96. Please note that the data for DAS 56 are
biased by the calibration under cloudy conditions (cf.
Section 4.3). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version
of this article.)
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TCARI/OSAVI for both the HS DSM and FS3 data. Additionally, in the
combined data of DAS 70–96 and 84–96, the REIP from the HS DSM
data yielded R2 values between 0.57 and 0.66. Although the R2 values
are comparable to other studies for single and multi-temporal studies
using VIs (Quemada et al., 2014; Yu et al., 2014), several remarks can
be given. In Fig. 10 it is apparent that the experimental plots are not
homogenous. Thus, the chlorophyll values estimated on individual
leaves at the destructive part of the plot do not necessarily reflect the
average chlorophyll value of the plot. In the future, destructive field
measurements should be precisely georeferenced to enable a

comparison with imaging spectroscopy data—particularly for very-
high-resolution data such as UAV data.

The results from the HS DSMdis and HS DSMavg differ slightly in
most cases. The results of the FS3 and HS DSM data differ significantly
in most cases. Interestingly, in most cases, the VIs calculated with the
HS DSM data performed better than the VIs calculated from the FS3
data. Originally, the REIP and TCARI/OSAVI were developed from
modeled data. Although not clearly stated in the original papers (Guyot
and Baret, 1988; Haboudane et al., 2002), the VIs might have been
developed for a more directional nadir looking narrow FOV case. Thus,
the angular properties present in HS DSM data might be better suited
for parameter retrieval with those VIs. On the other hand, PRI was
developed with data of a spectrometer with an FOV of 15° (Gamon
et al., 1992) and in most cases showed better performance for FS3 data.
These results highlight that caution must be taken when results from
one sensor are compared to results from different sensors or processing
schemes.

5. Conclusion

Low-flying sensing systems can carry out surveys efficiently without
disrupting the surface. In combination with 2D spectral imagers, spec-
tral and 3D spatial information can be captured simultaneously and at
very high resolution. Besides of the recent developments in multi-
spectral LIDAR systems (Suomalainen et al., 2011), 2D imaging spec-
troscopy is currently the only technique that allows the derivation of
spectral and 3D data at the same time with the same sensor (Aasen
et al., 2015). With data products such as high-resolution hyperspectral
digital surface models, precision agriculture or field-phenotyping ap-
plications can be supported. In comparison with non-imaging ob-
servations, where only a limited amount of measurements can be car-
ried out, hundreds of pixels are captured from an AOI. This allows the
detection of small-scale variability within the canopy such as animal
damage, lodging or tractor tracks. Future studies could further exploit
these data by applying pixel-wise methods and zonal statistics that
would also represent the variety within a certain area. In order to fully
comprehend the data, however, one must consider its properties.

Imaging spectroscopy with 2D imagers generates a spectral re-
presentation of a scene by recording multiple overlapping images,
which are composed to create the full scene based on a particular

Fig. 11. Correlation coefficient (A) and the
slope (B) for all significant (p < 0.05) re-
lationships of the FS3 and HS DSMdis data for
the different days after seeding (DAS).
Additionally, scatterplots of the vegetation
indices NDVI (C), TCARI/OSAVI (D), REIP (E)
and PRI (F) are shown.

Table 3
Slope and coefficient of determination between the vegetation indices calculated from the
HS DSMdis and FS3 data.

NDVI TCARI/OSAVI PRI REIP

DAS slope R2 slope R2 slope R2 slope R2

56 1.07 0.46 0.08 0.01 0.46 0.28 0.63 0.53
70 0.87 0.65 0.58 0.64 0.94 0.36 1.45 0.87
84 1.05 0.73 0.79 0.74 0.70 0.17 1.37 0.86
96 0.56 0.68 0.44 0.70 0.92 0.31 1.19 0.82

Table 4
Coefficients of determination (R2) of different vegetation indices for the prediction of
chlorophyll for the individual dates and across the DAS 70–96 and 84–96 from the HS
DSMdis, HS DSMavg and FS3 data.

DAS 56 70 84 96 70–96 84–96

NDVI HS DSMdis 0.00 0.02 0.14 0.55 0.42 0.52
HS DSMavg 0.00 0.03 0.12 0.58 0.42 0.52
FS3 0.00 0.00 0.00 0.27 0.34 0.40

TCARI/OSAVI HS DSMdis 0.00 0.09 0.27 0.44 0.36 0.54
HS DSMavg 0.00 0.11 0.23 0.44 0.35 0.52
FS3 0.00 0.09 0.10 0.23 0.42 0.37

PRI HS DSMdis 0.30 0.04 0.16 0.14 0.10 0.29
HS DSMavg 0.34 0.15 0.22 0.18 0.11 0.44
FS3 0.10 0.34 0.31 0.31 0.20 0.41

REIP HS DSMdis 0.18 0.20 0.44 0.60 0.57 0.66
HS DSMavg 0.15 0.23 0.41 0.61 0.57 0.65
FS3 0.13 0.27 0.30 0.49 0.53 0.57
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processing scheme. In this study, the theoretical framework to under-
stand the data properties of these scenes was developed. Every pixel in
an image has its own measurement geometry, which influences the
apparent spectral reflectance because it interacts with the canopy ani-
sotropy and illumination conditions. As a result, the data contain BRDF
effects. The data processing scheme defines how this spectral in-
formation is composed and thus defines the angular properties of the
pixels in the resulting scene. Depending on the processing scheme used,
the data might differ.

• The concept of the specific field of view (SFOV) describes the
composition of pixels and their angular properties within a scene
used to characterize a specific AOI on the ground. It allows under-
standing the complex composition of the signal extracted from a
data product.

• When the spectral information is extracted from a scene where no
blending of the spectral data is applied (HS DSMdis), the SFOVs of an
AOI mostly consist of pixels captured in a geometry close to the
nadir, since only the central part of the images is used. Thus, the
proportion of soil signature is increased and BRDF effects are more
pronounced and visible in comparison with other processing modes.

• When spectral information is extracted from a scene where multiple
images are averaged (HS DSMavg), the SFOVs uses pixels that were
captured within a large part of the FOV of the device. Thus, the
proportion of off-nadir information—and consequently of plant
signature—is increased in comparison to the HS DSMdis. In addition,
the spatial pattern of the spectral data appears smoother and BRDF
effects might be normalized to a certain degree. Still, the measure-
ment geometry within individual images affects the spectral data.

• For non-imaging data, the SFOV equals the FOV. Thus, the SFOV of
data from field spectrometers is composed of a wide range of mea-
surement geometries–in the case of the FS3, without fore optics 25°
around the nadir. Thus, the proportion of off-nadir information is
high.

• The differences between different processing modes and devices are
wavelength-dependent. Because they result from the interaction of
illumination conditions and viewing geometry, as well as canopy
structure, they are also growth stage dependent. The largest relative
differences are found in the red, the lowest in the NIR. In compar-
ison to a spectrum extracted from a nadir image of a barley canopy
at the booting stage, the spectral information at 682 nm of the HS
DSMdis, HS DSMavg and of a non-imaging spectrometer differed by
up to 4, 11 and 17%, respectively.

• The results show that data from imaging and non-imaging are not
comparable per se. This aligns with earlier studies. This study
identifies the different SFOVs as the reason for these differences.
Furthermore, the retrieval of biophysical plant parameters with
vegetation indices (NDVI, REIP, PRI, TCARI/OSAVI) is also influ-
enced. Thus, caution must be taken when results from one sensor are
compared to results from a different sensor or processing scheme.
Further research is needed to investigate the sensitivity of different
retrieval methods to different SFOVs.

• The results of this study are relevant in all cases where data captured
with different SFOVs are compared. Thus they apply to every case
were different sensors or different processing methods are used.

From these results, several recommendations can be given for future
multi-temporal missions and necessary developments in the field of
imaging spectroscopy with 2D imagers:

• Smaller spaces between image capturing positions increase the
chance that information is available with a desired measurement
geometry.

• The measurement geometry has a weaker influence under cloudy
conditions. Additionally, low-altitude imaging spectroscopy can be
carried out under cloudy conditions. This option should be further
investigated; however, this requires radiometric calibration proce-
dures that allow constant adaption to illumination.

• Reliable algorithms to correct for BRDF effects in spectral data must
be developed and made available to the community. This is parti-
cularly important for low-altitude sensing systems since wider FOVs
are needed to cover larger areas in the same time as high-altitude
systems. The 3D information generated during the generation of HS
DSMs could be used to derive structural data to support these al-
gorithms.

With the anticipated democratization of imaging spectroscopy, the
field will become more complex. When data are no longer only gen-
erated in a standardized way by experts from established space or air-
borne missions, the democratization of knowledge about data acquisi-
tion and processing will also be needed. This study shows that
information about the angular properties of the pixels in a data product
and the processing workflow should become a standard along with
other quality assurance information. In general, with the diversity of
sensors and processing schemes, generating and disclosing metadata
about the sensor as well as the processing pipeline will be critically
important to ensure comparability between results.
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Appendix A

Fig. A.1. Scatterplots of the reflectance at six wavelength derived from the FS3 and HS DSMdis for all plots (plot numbers are indicated with numbers)
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