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ABSTRACT

Hyperspectral inpainting (HI) is a signal processing tech-
nique for recovering the complete hyperspectral imaging
data cube from its incompletely acquired version. Some
benchmark methods either rely on big data or the plug-
and-play learning strategy. In this paper, we introduce
John ellipsoid (JE), a key topology in functional analy-
sis, to design a blind HI algorithm. JE criterion holds
strong endmember identifiability like the well known
(non-convex) minimum-volume simplex criterion in hy-
perspectral remote sensing, but just requires solving a
convex optimization problem bringing it an advantage in
computational aspect. As revealed in recent literature,
comparing to widely adopted simplex topology, JE is
robust against both low purity of hyperspectral data and
ill-conditioned endmember matrix. Such robustness does
bring us advantage in HI performance, as illustrated by
experimental results on benchmark dataset.

Index Terms— Hyperspectral image, hyperspectral
inpainting, John ellipsoid, blind signal processing, func-
tional analysis

1. INTRODUCTION

Hyperspectral image (HSI) has found its broad applica-
tions, including change detection, material identification,
land classification, etc. During the acquisition and/or
transmission of HSI, the data are quite often corrupted
or incompletely observed, leading to some dead pixels or
low-quality bands. Large areas of dead pixels in consecu-
tive bands will seriously degrade the effectiveness of HSI
applications. In order to ensure the quality of service in
various HSI applications, it’s indispensable to restore the
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incomplete data, hopefully under an fully unsupervised
learning framework.

In recent years, several high-performance hyperspec-
tral inpainting (HI) methods have been proposed, as
reviewed hereinafter. It is well known that HSI data is
highly correlated in both frequency domain and spatial
domain, thereby making the low-rank modeling and the
total variation regularization popularly adopted in nu-
merous HI methods; see, e.g., [1, 2]. For example, the
method proposed in [2], termed local low-rank matrix
recovery regularized by spatial-spectral total variation
(LLRSSTV), exploits the low-rankness of local struc-
ture, and captures the smoothness of global structure
based on a spatial total variation term. On the other hand,
the technique of source separation has also exploited by
some HI methods [3, 4], such as the unmixing based de-
noising/inpainting (UBD) method proposed in [3]. This
kind of method may also pick up pure pixels manually or
automatically, followed by some typical linear unmixing
algorithm to compute the corresponding representation
coefficients. However, the required pure pixel assump-
tion is commonly violated in remotely acquired HSI data,
besides the spectral variation issue [5]. Finally, the fast
hyperspectral image inpainting (FastHyIn) method [6]
employs the self-similarity regularization under a lin-
ear mixing model. FastHyIn encourages solutions with
similarity between nonlocal patches in the eigenspace,
which in turn ensures the self-similarity structure in the
restored HSI. However, FastHyIn does not define the
self-similarity prior explicitly [7], making it rely on the
plug-and-play learning that has no convergence guaran-
tee in general.

In this work, we attack the HI problem using John el-
lipsoid in functional analysis. John ellipsoid has revealed
its fundamental role in hyperspectral analysis as can be
seen in recent literature [8]. Unlike the widely used sim-
plex topology in hyperspectral remote sensing [9], which
amounts to non-convex NP-hard problem, computing the
John ellipsoid is a convex optimization problem [8], and
such convexity is proven to be critical in separating heav-



ily mixed hyperspectral data [8]. Furthermore, in most
hyperspectral scenes, the material signatures (endmem-
bers) would be quite similar to each other, leading to a
high condition number of the endmember matrix. As in-
vestigated in very recent machine learning literature [10],
John ellipsoid is known to be able to elegantly handle
such ill-conditioned scenarios. Note that the convex John
ellipsoid criterion [8] and the non-convex simplex crite-
rion [9] surprisingly hold the same sufficient endmember
identifiability condition [8, 11, 12]. These fundamental
improvements motivate us to employ John ellipsoid into
the HI study. As can be seen from some experimental ev-
idence, John ellipsoid indeed yields superior HI results.

Notations: IZ , {1, . . . , Z} for a given positive in-
teger Z. vol(S) denotes the volume of a measurable set
S. convS denotes the convex hull of the set S [13].
1n is the n-dimensional all-one vector. Rn is the n-
dimensional Euclidean space, and Rm×n is the (m×n)-
dimensional real-valued matrix space. Rn

+ is the non-
negative orthant of Rn, and Rm×n

+ is the set of m × n
matrices with all entries being non-negative. ‖ · ‖1, ‖ · ‖2
and ‖ · ‖F denote `1-norm, `2-norm and Frobenius norm,
respectively.

2. JOHN ELLIPSOID BASED HI METHOD

As HSI can be conveniently represented by arranging its
pixels into columns of a matrix X ∈ RM×L, where M
(resp., L) is the number of spectral bands (resp., pixels).
In practice, X may not be completely acquired or ob-
served; let Ω ⊆ {(m, `) | m ∈ IM , ` ∈ IL} denote
the set of indices of those missing data. The hyperspec-
tral inpainting problem is then to recover X from the
remaining observed data {[X]m,` | (m, `) ∈ Ω}, where
Ω , {(m, `) | m ∈ IM , ` ∈ IL}\Ω is the set of indices
of those successfully acquired/observed data.

Let A = [a1, . . . ,aN ] ∈ RM×N be the endmember
matrix, whose nth column an is the spectral signature
(endmember) of the nth material, where N is number of
materials (presented in the HSI X) that can be blindly
estimated by information-theoretic minimum descrip-
tion length (MDL) criterion; see [14] for a parameter-
tuning-free order-selection method. Each column of
X = [x1, . . . ,xL] representing a pixel can then be
modeled as a linear combination of the signatures, i.e.,
x` =

∑N
n=1 Sn,`an, ∀` ∈ IL, which can be concisely

written as X = AS with S = [Sn,`] ∈ RN×L being the
abundance matrix [15]. Therefore, the HI problem be-
comes estimating A and S, respectively done next, from
the available information in {[X]m,` | (m, `) ∈ Ω}.

As reported in recent imaging sciences litarature [8],

Fig. 1. A benchmark HSI seriously corrupted by stripes is il-
lustrated in (a). Its 2-D visualization, together with the John
elliposid corresponding to X , is displayed in (b). After remov-
ing the stripe-corrupted pixels (i.e., black dots in(b)), the John
ellipsoid corresponding to the remaining complete pixels in XΩ

(marked by blue dots) remains almost unchanged, as displayed
in (c).

the topology of John ellipsoid can be used to perfectly
recover signatures in A under a very mild sufficient con-
dition on the data purity γ ∈ (0, 1] (defined in [11,12])—
to get a sense, John ellipsoid requires just “γ > 1√

N−1”,
though typical endmember extraction algorithms (EEAs)
require “γ = 1” that is equivalent to the pure-pixel as-
sumption [11, 12].

John ellipsoid E? is the maximum-volume ellipsoid
inscribed in the data convex hull, which can be explicitly
formulated as the following optimization problem:

E? = arg max
E⊆conv{x1,...,xL}=convX

vol(E), (1)

from which A can be computed either by a simple affine
mapping [8, Corollary 1] or by regular-simplex fitting in
a transformed space [10, Proposition 2]. Due to space
limitation, we refer readers to [8,10] for how to obtain A
from the John ellipsoid E?.

At this moment, one would just need to keep in mind
that, unlike the non-convex Craig’s minimum-volume
simplex EEA criterion [9], John’s maximum-volume el-
lipsoid criterion (1) can be solved as a conic program
that is convex [8].1 Most importantly, such convexity has
been theoretically and experimentally proven to be es-
sential in unmixing heavily mixed hyperspectral data [8].

Though there are fundamental advantages of John

1As reported in the seminal IEEE WHISPERS paper [16], the Craig
simplex based EEA algorithm (i.e., the simplex identification via split
augmented Lagrangian (SISAL)) cannot equivalently reformulate the
simplex volume into a convex formula since the parameter domain can-
not be restricted on the positive definite (PD) cone; see [16, Page 2].
Very beautifully, the ellipsoid volume can be defined on the PD cone,
allowing us to formulate the ellipsoid volume directly as a convex for-
mulation without approximation [8, 10].



ellipsoid, such as robustness against the high condi-
tion number of A (e.g., caused by very similar signa-
tures) [10] and the convexity of the criterion (that allows
successful unmixing of heavily mixed signatures) [8],
the criterion (1) is not directly applicable for HI because
some pixels x` are not completely observed. Fortu-
nately, this turns out to be a minor issue, as discussed
below, ever for a challenging HI scenario (cf. Figure
1). Specifically, empirical experience suggests that John
ellipsoid can be very well approximated by

E? ≈ arg max
E⊆convXΩ

vol(E), (2)

where XΩ ⊂ X , {x1, . . . ,xL} is the set of completely
acquired pixels.

To get a sense, we illustrate the idea using an HSI
with N = 3 endmembers for the purpose of easy vi-
sualization, in Figure 1(a), where a benchmark HSI
containing serious stripes (more than 36% dead pixels)
is displayed [17, 18]. This HSI data is visualized by
projecting each pixel vector onto a 2-dimensional space
computed by PCA, as shown in Figure 1(b), where dead
pixels (resp., complete pixels) are marked by black dots
(resp., blue pixels), and the data convex hull convX is
outlined by the purple polytope; the John ellipsoid of the
complete HSI is then shown as the red ellipsoid. Re-
markably, even after removing the dead pixels, the John
ellipsoid corresponding to the remaining completely ob-
served pixels in XΩ ⊆ X (i.e., the maximum-volume
ellipsoid inside convXΩ) almost remains unchanged, as
can be seen in Figure 1(c).

Therefore, such approximated John ellipsoid can be
used to well estimate the signatures, denoted as Â, based
on which we estimate the abundances S = [s1, . . . , sL]
as follows:

• (Case 1) For a complete pixel x`, its abundance
vector can be naturally estimated as

s?` = arg min
s∈T
‖Âs− x`‖22, (3)

where T , {s | s ∈ RN
+ , 1T

Ns = 1} is the
unit simplex of RN that forces the abundance non-
negativity and sum-to-one constraints [15].

• (Case 2) If the `th pixel is incompletely acquired,
then we define its support as the index set Ω` ,
{m | (m, `) ∈ Ω} ⊆ IM , and hence the success-
fully acquired data in the `th pixel may be written
as [x`]Ω`

. Naturally, we estimate the abundances
using the maximum available information:

s?` = arg min
s∈T
‖ÂΩ`

s− [x`]Ω`
‖22, (4)

Fig. 2. False-color composition (R: 53; G: 33; B: 13) of the
studied HSI subimage over Pavia Center.

where ÂΩ`
is the submatrix of Â formed by its

rows with indices in Ω`.

Note that if the `th pixel is a complete one, we have
Ω` = IM , and hence (4) reduces back to (3). There-
fore, we can unify the above two cases as (4), which is
further regularized using sparsity prior that can improve
abundance estimation as reported in [19], i.e., ∀` ∈ IL,

s?` = arg min
s∈T
‖ÂΩ`

s− [x`]Ω`
‖22 + λ‖s‖1, (5)

where λ = 0.001 is the regularization parameter, and
`1-norm (i.e., the convex envelope of the `0-norm [13])
encourages a sparse solution.

As solving (5) pixel-by-pixel is computationally in-
efficient as typical L is very large, we solve the L sub-
problems in parallel based on the following two strate-
gies. First, by the definitions of `1-norm [13] and T , the
regularization term ‖s‖1 is a constant whenever s ∈ T ,
making the sparsity regularization ineffective; to encour-
age sparse solutions, (5) is simplified as

s?` = arg min
s∈RN

+

‖ÂΩ`
s− [x`]Ω`

‖22 + λ‖s‖1, ∀`. (6)

Note that such simplification of leaving out the sum-to-
one constraint 1T

Ns = 1, not just enables the sparsity
regularization, but also mitigates the nonlinear mixing ef-
fect as known in prior remote sensing literature. Second,
as N � M in practical scenarios, we have more than
N completely acquired spectral bands, i.e., |Ω1 ∩ · · · ∩
ΩL| ≥ N , enabling approximate but efficient parallel
computing of (6), namely

min
S∈RN×L

+

‖ÂΩ1∩···∩ΩL
S −XΩ1∩···∩ΩL

‖2F + λ‖S‖1,

whose solution S? can be computed very fast using the
SUnSAL algorithm [20], where XΩ1∩···∩ΩL

is the sub-
matrix of X formed by its rows with indices in the index



(a) (b) (c) (d) (e) (f) (g)

Fig. 3. (a) The 20th band of the studied Pavia Centre data; (b) its stripe-corrupted version. The reconstructed band image of (c)
PDE, (d) UBD, (e) LLRSSTV, (f) FastHyIn, and (g) the proposed JEHI.

set Ω1 ∩ · · · ∩ΩL, and ÂΩ1∩···∩ΩL
is similarly defined.

The reconstructed HSI is then given by X̂ = ÂS?. Inter-
ested readers may refer to [10] for the complexity analy-
sis related to JE.

3. EXPERIMENTS

In this experiment, we study a widely used HSI data ac-
quired by the Reflective Optics System Imaging Spec-
trometer (ROSIS) sensor over the Pavia Centre [6, 21].
The studied 200× 200 subscene is displayed in Figure 2
as a false-color image. After removing some low-quality
spectral bands, a total of 80 bands is used in the exper-
iment. We investigate a highly challenging HI scenario,
where 40 consecutive spectral bands of this data are cor-
rupted by wide stripes, for simulating large incompletely
acquired areas over continuous bands. The 20th band
of the stripe-corrupted data and its clean version are dis-
played in Figures 3(b) and 3(a), respectively.

The incomplete HSI described above is then pro-
cessed by several benchmark HI methods, including par-
tial differential equations (PDE) based HI [22], UBD [3],
LLRSSTV [2], FastHyIn [6] and the proposed John
ellipsoid based HI (JEHI) method. JEHI is easily imple-
mentable, except for the computatio of JE that is done
by the solver develped in [10] with available open source
code.2 The 20th bands of the reconstructed HSIs of these
methods are displayed in Figures 3(c) to 3(g), respec-
tively. As can be seen from Figure 3, only the proposed
JEHI algorithm yield good visual quality for such a chal-
lenging HI scenario. The other methods either cannot
inpaint the image or yield noisy reconstruction.

To have a better understanding, we quantitatively
compare these HI methods. To measure the similarity
between the 40 reconstructed bands and their refer-
ence ones, we adopt some commonly used performance
metrics, including peak signal-to-noise ratio (PSNR),

2The MATLAB code of fast JE computation is available in https:
//sites.google.com/view/chiahsianglin/home.

Table 1. Quantitative comparison between the proposed
JEHI and other benchmark HI methods.

PSNR UIQI ERGAS SAM T (sec.)
PDE 26.80 0.815 4.661 2.694 62.89
UBD 27.59 0.852 8.526 10.83 12.48

LLRSSTV 21.68 0.819 5.686 9.047 1509
FastHyIn 32.89 0.823 6.659 5.614 6.39

JEHI 33.81 0.931 3.883 5.163 25.22

universal image quality index (UIQI), erreur relative
globale adimensionnelle de synthèse (ERGAS) and spec-
tral angle mapper (SAM). Rigorous definitions of PSNR
and ERGAS can be found from [23], while that of UIQI
can be found from [7]; due to space limitation, they are
not recalled here. Furthermore, computational time T
in seconds (sec.) is adopted as an index of computa-
tional efficiency. All the experiments in this section are
executed on a computer facility equipped with Core-i7-
9750H CPU with 2.60-GHz speed and 16-GB RAM,
and all the HI methods are implemented in Mathworks
MATLAB R2019a.

The results are summarized in Table 1, where one can
see that the proposed JEHI does perform best in terms of
all the first three indices, while performs second w.r.t.
SAM. For the global quality measure ERGAS [23], PDE
and LLRSSTV also perform well. As for computational
efficiency, FastHyIn and UBD are outstanding. These
experimental evidences again demonstrate the essential
role of the ellipsoid topology in hyperspectral analysis.

4. CONCLUSION

We have presented an unsupervised hyperspectral in-
painting algorithm, termed JEHI, again showing the
effectiveness of John ellipsoid in hyperspectral data
analysis. John ellipsoid (i.e., the maximum-volume data-
inscribed ellipsoid) has been generalized to the case of
incomplete data acquisition, and is known to be robust



against low data purity and ill-conditioned endmember
matrix. John ellipsoid holds strong endmember iden-
tifiability like the well known (non-convex) minimum-
volume simplex criterion in hyperspectral remote sens-
ing, but just requires solving a convex optimization
problem bringing it another advantage in computational
aspect. Experimental result has demonstrated the superi-
ority of JEHI over benchmark HI methods.
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