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Abstract—Spectral unmixing is one of the post processing
operation of hyperspectral image processing. In general, it is
observed that the traditional algorithms are not efficient enough
to estimate the abundance fractions of endmembers. In recent
years, neural network based approaches are competent enough to
perform the complex operations for remote sensing applications.
After the origination of deep learning, number of deep learning
approaches have been proposed and trained using different loss
functions for performing several complex operations. Hence, it is
necessary to select suitable deep learning model and loss function
for the application(s). The objective of this work is to study
the suitability of the model which affects the performance of
the unmixing operation. In this work, estimation accuracy of
different deep learning models and loss functions for spectral
unmixing operation using hyperspectral data have been studied.
In this work, five deep learning models are implemented and
trained using four loss functions. Evaluation of proposed study
has been carried using available real hyperspectral datasets.
Hence, It is observed from the study that the different deep
learning models and loss functions affect the estimation accuracy
of spectral abundance fractions. In this work, parallel convolution
1-D model has been performed best among the implemented
approaches for estimation of abundance fractions.

Index Terms—Abundance Fractions, Deep learning, Hyper-
spectral Imaging, Loss function, Spectral Unmixing

I. INTRODUCTION

Hyperspectral imaging is one of the popular Earth Observa-
tion [1], [2] and Geoimaging techniques. It has been applied in
several applications which includes environmental surveys [3],
[4], agriculture, [5], [6], geology [7] and so on. This technique
includes spatial and spectral information of the scene under
observation. In general, it is observed that mixed pixels occur
due to the coarse resolution of hyperspectral imagery. Spectral
unmixing is one of the vital tasks of hyperspectral image
post-processing operation in which measured spectrum of the
mixed pixel is decomposed into a collection of endmembers
and their corresponding abundance fractions. It consists of two
operations, i.e., endmember extraction and abundance fractions
estimation of endmembers.

Some of the existing unmixing algorithms for abundance
fractions estimation operation are Fully Constrained Least
Squares (FCLS) [8], Unconstrained Least Square (UCLS),
and Non-Negative constrained Least Square (NNLS). While
Vertex component analysis [9] and N-FINDR [10] techniques
are used for endmember extraction in unmixing. In general,
unmixing depends upon preconsidered mixing model which

may be either linear or nonlinear in hyperspectral image
processing. Linear Mixing Model (LMM) does not consider
multiple scattering and intimate mixture effects [11]. Some
algorithms and approaches have been proposed to solve linear
unmixing problem [11], [12]. However, LMM is not an actual
expression of many real-world scenarios. Many models have
been proposed to solve nonlinear mixing which includes
Fan model [13], Modified GBM (MGBM) [14], Polynomial
Post-Nonlinear model (PPNMM) [15] and Multilinear mixing
model (MLM) [16]. However, most of the nonlinear model
for abundance fractions estimation are model-dependent, i.e.,
applicable for certain case. Hence, unmixing results may not
be guaranteed, if the considered mixing model does not match
with the real scene. In a real scenario, it is not possible to
consider prior mixing model of different hyperspectral images.

In recent years, usage of neural network algorithms have
been increased in remote sensing applications [17]. Many
researchers suggested considerable number of advantages of
neural network approaches over other methods. Applications
of neural network approaches have been increased due to their
ability to learn complex patterns, i.e., no prior assumption is
needed about the distributions of dataset [18]. In [19], it is
observed that the deep learning models are more accurate for
spectral unmixing operation than their traditional counterparts.
Supervised deep learning models [20] like stacked encoders
and PCAnet have also been used for abundance estimation
task. In [21], authors have also been used autoencoders to do
blind unmixing operation.

In recent times, there are number of deep learning models
and their loss functions have been proposed. The objective of
this work is to study the different deep learning models and
loss functions for abundance fractions estimation in spectral
unmixing operation. In this proposed work, supervised deep
learning models have been implemented with more complexity
than the shallow neural networks. Consequently, Complexity
of the model encodes the information better than the shallow
networks for hyperspectral data. Implemented supervised deep
learning models for abundance fractions estimation consist
of convolution based models as well as Long Short Term
Memory (LSTM) units [22] based models. Convolutional
neural networks have staple in the field of computer vision
[23], producing promising results. LSTM units have also been
very effective for sequential data like text. Thus, it produces



promising results for text analysis. However, proposed models
are supervised learning models, i.e., data-driven models; there-
fore, data is required for training before abundance fractions
estimation operation. In the proposed models, there is no need
to assume mixing concept for unmixing operation. Imple-
mented models have been trained for end-to-end mapping, i.e.,
from spectral information of a pixel to its abundance fractions
without considering its mixing model. Experiments on real
hyperspectral data sets have been performed using different
models and loss functions.

Other sections of the paper have been discussed below.
Section II discusses the methodological part of proposed work.
Implemented models and loss functions have been discussed in
section III. Experiment and results, and conclusion and future
scopes have been discussed in section IV and V.

II. METHODOLOGY

In this section, methodology for the proposed work has
been discussed. For abundance fractions estimation, five deep
learning architectures have been proposed and trained using
four loss functions which are discussed below. Each proposed
model has been trained using labelled data.

Generalized schematic representation of deep learning ar-
chitecture for the proposed work has been shown in Figure
1. It is observed from the Figure that the single pixel of the
hyperspectral dataset has been given as an input to the LSTM
and convolutional based feature encoders. After that, it is then
followed by fully connected layers to output. Labelled data has
been used to train a model. Trained models have been used for
estimating the abundance fractions. To obtain the better results,
tuning of hyperparameters has been done for each network
and dataset. Adam optimiser has been used for training since
it is more robust for deeper models with a learning and
decay rate of 0.001 and β1 = 0.001. Along with, mini-batch
training technique has been used with a batch size of 64. In
the proposed models, two constraints for abundance fractions,
i.e., non-negative and sum up-to-one have been considered. To
ensure these constraints, softmax layer has been applied over
the output of the last fully connected layer. An expression for
the sum-to-one and non-negative constraints has been given
below:

R∑
l=1

αil = 1, αil ≥ 0 ∀l = 1, ..., R. (1)

In above equation, αil represents the abundance fraction of
lth endmember of ith pixel and R indicates the number of
endmembers.

III. PROPOSED MODELS

Five deep learning based models have been proposed for
abundance fractions estimation of the endmembers. They are
Long Short Term Memory (LSTM) Network, Time distributed
LSTM Network, Convolution 1-D Network, Parallel Con-
volution 1-D Network, and Bidirectional LSTM Network.
The proposed models include convolutions and LSTM based

feature encoders which are followed by a fully connected layer.
The input of the models is a single pixel Xi of size λ ∗ 1
extracted from the hyperspectral image of dimension X∗Y ∗λ.
Each of the model has been discussed below:

• Long Short Term Memory (LSTM) Network For
LSTM, value of a single pixel at different wavelengths is
taken as a sequential data. So, recurrent neural networks
like LSTM network can apply to data. In this model,
a series of LSTM cells has been used, followed by the
fully connected layers to predict the abundance fractions
of each pixel. In this model, we have used the unit size
of 198.

• Time distributed LSTM Network This model is dif-
ferent from the LSTM network which generates single
output. In time distributed LSTM network, each LSTM
cell generates output. The output from each of the LSTM
cells is sent to the time distributed layer which encodes
the output from each cell. Then, it is followed by fully
connected layers.

• Convolution 1-D Network Each pixel of the hyperspec-
tral data is considered as a spatial data for convolution
1-D network. Convolutional 1-D layers are followed by
max-pooling in series to capture the feature of this spatial
data. Finally, it is followed by the fully connected layers.
For the implementation of convolution layer, we have
used the filter size of 25. While size of max pooling and
kernal is of 3.

• Parallel Convolution 1-D Network In this model, a simi-
lar model is made like the convolutional 1-D network, but
in this case, there would be three different convolutional
1-D networks are in parallel. Each one has a different
filter/kernel size for convolution. Finally, a merged output
of parallel networks is sent to a fully connected network.
In this model, we have used the kernel size of 3,4 and 5.

• Bidirectional LSTM Network In this model, we make
use of bi-directional network using LSTM units. Since,
data is considered to be sequential. Hence, network tries
to learn from forward and backward direction in order to
encode more information. Afterwards, output of this bi-
directional network sends to a fully connected network.

A. Loss Functions

In general, models are trained using an optimization process
that needs a loss function to compute the model error. Loss
function plays a vital role in order to reduce the all aspects of
model into a single value. Accordingly, candidate solutions
have to be ranked and compared. Selection of poor error
function produces unsatisfactory results. Hence, four different
loss functions are used here in order to train the implement
five deep learning based models. Each of the loss function has
been discussed below:

• Mean Square Error Loss It is the average of the square
of the deviations between the estimated Ŷi and real value
Yi. An expression for the mean square error loss has been
given below:
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Fig. 1. Generalized Schematic Representation of Deep Learning Architecture for the Proposed Work

MSE =
1

n
Σn

i=1(Yi − Ŷi)2 (2)

• Log Cosh Loss In Log cosh loss, logarithm of the
hyperbolic cosine of the prediction error (x = Yi−Y i(i))
is taken i.e., log(cosh(x)). In general, it is approximately
equal to (x∗∗2)/2. Logcosh works closely like the mean
squared error and will not be strongly affected by the
occasional wildly incorrect prediction.

• Cosine Similarity Loss Cosine similarity is a measure
of similarity between two non-zero vectors. It is an inner
product space that measures cosine of the angle between
them. In this case, we consider the discrete probability
distribution as vectors on which cosine similarity is
calculated. Expression for cosine similarity loss has been
given below:

cosθ =
A.B

‖ A ‖‖ B ‖
=

Σn
i=1AiBi√

Σn
i=1A

2
i

√
Σn

i=1B
2
i

(3)

Where, A and B are non-zero vectors.
• Cross Entropy Loss The cross-entropy between two

probability distributions a and b over the same underlying
set of events measures the average number of bits needed
to identify an event drawn from the set. If a coding
scheme is used i.e., optimised for an unnatural probability
distribution b, rather than the true distribution a. For
discrete a and b, cross-entropy loss expression has been
given below:

H(a, b) = −Σxa(x)logb(x) (4)

B. Evaluation Metrics

Two evaluation criteria have been used here, and they
are Root Mean Square Error (RMSE), and cosine similarity.
Expressions for the evaluation metrics are given below:

• RMSE : This is used to measure the average difference
between two values i.e., actual and predicted value.

RMSE =

√
1

n
Σn

i=1(a− b)2 (5)

• Cosine Similarity : This metric is used to measure the
similarity between two non-zero vectors (a and b). It is
an inner product space that measures the cosine of the
angle between them.

cosθ =
a.b

‖ a ‖‖ b ‖
(6)

IV. EXPERIMENT AND RESULTS

In this section, experiment and results have been demon-
strated for the proposed work. All the implemented deep
learning models along with four loss functions have been used
for experimentation purpose. All the proposed models along
with different loss functions have been trained to determine
abundance fractions of endmembers. They are tested using
popular benchmarked hyperspectral datasets. JasperRidge and
Samson hyperspectral datasets have been used as shown in
Figure 2 and Figure 4. Both the datasets have different number
of endmembers.

JasperRidge [24]–[26] is one of the popular hyperspectral
dataset with a spectral resolution of 9.46 nm. Each pixel of
the dataset ranges from 380 nm to 2500 nm. Dimension of the
dataset includes 100 x 100 pixels with 198 channels. There
are four endmembers in this dataset, i.e., tree, soil, water,
and road. Spectras of the endmembers have been shown in
Figure 3. Similarly, Samson [24]–[26] dataset has also been
used to determine the best performing model and loss function.
Dimension of the dataset includes 95 x 95 pixels with 156
channels, and it covers the wavelength range from 401 nm to
889 nm. There are three endmembers in this dataset, i.e., soil,
tree, and water. Spectras of the endmembers have been shown
in Figure 5. This work has been implemented using python
tensorflow.

For training purpose, randomly shuffled the pixels and pick
out 55% of the pixels along with their labels. After that, trained
models are tested with the remaining 45% pixels of the dataset.

Different loss functions have been used for training the
models and they are mean square error loss, logcosh loss,
cosine loss, and cross-entropy loss function, respectively. Root
mean square error (RMSE) and cosine similarity metrics
are used to determine the accuracy of the models. RMSE



metric represents the difference between the real and predicted
value using the spatial distance while the cosine similarity
metric calculates the spatial angle between the two values.
Table I depicts the RMSE and cosine similarity for all the
models using different loss functions on both the datasets. It
is observed that most of the models with different loss function
have been performing well as indicated by Table I. However,
Parallel convolution 1-D model, convolution 1-D has been
performing well among the proposed models for estimation
of abundance fractions.

Fig. 2. JasperRidge Dataset
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Fig. 3. Endmembers for JasperRidge Dataset

In case of JasperRidge (4 endmembers) hyperspectral
dataset, parallel convolution 1-D model with mean square error
loss function has been performing well. In this case, values
of RMSE and cosine similarity are 0.039 and 0.995. While
for Samson (3 endmembers) dataset, parallel convolution 1-D
model with cross-entropy loss function has been performing
well and the values of RMSE and cosine similarity are 0.028
and 0.998. It is noticed that the parallel convolution 1-D
model has been performing best for both the datasets by
using different loss functions. This is due to the fact that
parallel convolution 1-D model includes several 1D-CNN in
parallel to learn data presentation at different scales. As a

Fig. 4. Samson Dataset
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Fig. 5. Endmembers for Samson Dataset

result, it can effectively learn features from a richer data
representation automatically by many layers of convolution
and pooling operations. Alongwith, it is also observed that
RMSE and cosine error vary by using different loss function.
Hence, it can be say that the models and loss functions affect
the accuracy for the estimation of abundance fractions of
endmembers. Therefore, it is needed to select suitable deep
learning model and loss function for estimation of abundance
fractions of endmembers.

V. CONCLUSION

Estimation of spectral abundance fractions is one of the
major post-processing tasks of hyperspectral image processing.
Herein, five deep learning models are implemented to estimate
the abundance fractions. They are trained using four loss
functions. After that, comparison analysis has been done
among the approaches using different loss functions. For
this purpose, JasperRidge and Samson hyperspectral datasets
have been used for estimation of abundance fractions. It is
observed that the deep learning models with different loss
functions have been generated a promising result. However,
parallel convolution 1-D model has been performing best



TABLE I
RMSE AND COSINE ERROR FOR THE PROPOSED METHODS

JasperRidge Samson
Model RMSE Cosine RMSE Cosine

Mean Square Error Loss
Convolution 1-D 0.064 0.987 0.063 0.991
LSTM 0.092 0.973 0.055 0.993
Parallel Convolution 1-D 0.039 0.995 0.042 0.996
Timedistributed LSTM 0.067 0.986 0.072 0.992
Bidirectional LSTM 0.085 0.976 0.063 0.991

Cosine Loss
Convolution 1-D 0.049 0.992 0.065 0.992
LSTM 0.098 0.973 0.16 0.943
Parallel Convolution 1-D 0.047 0.993 0.041 0.997
Timedistributed LSTM 0.073 0.985 0.073 0.992
Bidirectional LSTM 0.097 0.972 0.074 0.989

Log Cosh Loss
Convolution 1-D 0.053 0.991 0.052 0.994
LSTM 0.081 0.973 0.124 0.951
Parallel Convolution 1-D 0.053 0.990 0.042 0.996
Timedistributed LSTM 0.064 0.986 0.055 0.994
Bidirectional LSTM 0.093 0.971 0.064 0.991

Cross Entropy Loss
Convolution 1-D 0.059 0.989 0.056 0.992
LSTM 0.089 0.973 0.113 0.960
Parallel Convolution 1-D 0.049 0.992 0.028 0.998
Timedistributed LSTM 0.061 0.987 0.117 0.978
Bidirectional LSTM 0.085 0.975 0.080 0.988

amongst the implemented models. This represents that it is
necessary to select suitable deep learning model for estima-
tion of abundance fractions of endmembers. For JasperRidge
dataset, parallel convolution 1-D model with mean square
error loss function has been performing well. While parallel
convolution 1-D model with cross entropy loss function has
been performing well for Samson dataset. It is mentioned that
JasperRidge dataset has four endmembers (Tree, Soil, Water,
and Road) while Samson dataset has three endmembers (Soil,
Tree, and Water). It is observed that the performance of loss
functions may vary by using different number of endmembers.
Hence, one possible reason for varying performance of the
loss function is that the number of endmembers. Further, one
may test the performance by considering different combination
of endmembers and loss functions using different types of
mixed datasets in order to find out other responsible factors.
Furthermore, this study may be used for various applications
like quantitative change detection.
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