
 

 

 
Abstract—Fourier Transform Infrared (FT-IR) spectroscopy 

coupled with chemometrics was used to distinguish between butter 
samples and non-butter samples. Further, quantification of the 
content of margarine in adulterated butter samples was investigated. 
Fingerprinting region (1400-800 cm–1) was used to develop 
unsupervised pattern recognition (Principal Component Analysis, 
PCA), supervised modeling (Soft Independent Modelling by Class 
Analogy, SIMCA), classification (Partial Least Squares Discriminant 
Analysis, PLS-DA) and regression (Partial Least Squares Regression, 
PLS-R) models. PCA of the fingerprinting region shows a clustering 
of the two sample types. All samples were classified in their rightful 
class by SIMCA approach; however, nine adulterated samples 
(between 1% and 30% w/w of margarine) were classified as 
belonging both at the butter class and at the non-butter one. In the 
two-class PLS-DA model’s (R2 = 0.73, RMSEP, Root Mean Square 
Error of Prediction = 0.26% w/w) sensitivity was 71.4% and Positive 
Predictive Value (PPV) 100%. Its threshold was calculated at 7% 
w/w of margarine in adulterated butter samples. Finally, PLS-R 
model (R2 = 0.84, RMSEP = 16.54%) was developed. PLS-DA was a 
suitable classification tool and PLS-R a proper quantification 
approach. Results demonstrate that FT-IR spectroscopy combined 
with PLS-R can be used as a rapid, simple and safe method to 
identify pure butter samples from adulterated ones and to determine 
the grade of adulteration of margarine in butter samples. 
 

Keywords—Adulterated butter, margarine, PCA, PLS-DA, PLS-
R, SIMCA. 

I. INTRODUCTION 

HE adulteration of food, addition of substances and 
ingredients and false claims about origin are of major 

concern not only for consumers, but also to industries and to 
control authorities [1], [2]. Adulteration of butter has a long 
history. Even before the production of margarine, butter was 
adulterated with cheaper substances, such as chalk and potato 
starch [1], [3]. Other common adulterants are lard, low priced 
animal fats e.g. beef and mutton fat and oils [1], [4]. Primary 
driving force of these kinds of food fraud is and has always 
been the financial advantage (so called economically 
motivated adulteration) [5]. 

Different analytical techniques have been used for the 
identification of food fraud (food authentication). Besides 
numerous wet chemical procedures, instrumental analysis is 
performed, including the use of gas and liquid 
chromatography coupled to diverse detection methods, 
isotopic ratio mass spectrometry, mass spectrometry, nuclear 
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magnetic resonance (NMR) spectroscopy, enzyme-linked 
immunosorbent assay (ELISA) and calorimetry [6]-[8]. As an 
example, Jin-Man et al. applied gas chromatography for the 
identification of adulterated milk fat by the quantification of 
fatty acids, triacylglycerol and cholesterol contents [9]. 
Lamanna et al. used 1H NMR profiling to evaluate the content 
of sheep milk in mixtures with cow milk [10]. However, these 
techniques are often expensive, time-consuming and require 
specific sample preparation. On the contrary, vibrational 
spectroscopic techniques offer several advantages over 
conventional methods, thus they are rapid, easy, economic, 
non-destructive and with limited risks for the operator’s health 
[11], [12].  

In case of mid infrared spectroscopy, samples absorb part of 
the infrared radiation, leading to the production of a spectral 
fingerprint. The fingerprints in the mid infrared region (4000-
400 cm-1) are the result of stretching, bending and rotating 
vibrational models of the biomolecules, like lipids, 
carbohydrates and proteins present in the sample [6], [13]. FT-
IR spectroscopy is a powerful and robust technique applied in 
the field of food science, since it gives information about 
functional groups and chemical composition of the analyzed 
matrix [14]. Near infrared (NIR) and mid infrared (MIR) 
coupled with chemometrics methods have been largely applied 
to food matrices in the field of food quality and authentication 
investigations [6], [15], [16]. Several algorithms are available 
to perform unsupervised classification model, e.g. PCA, 
supervised not-discriminant modelling model, i.e. SIMCA and 
supervised discriminant model, such as PLS-DA but also PLS-
R, suitable for qualitative and quantitative analysis of 
spectroscopic or spectrometric data [17]-[23]. Nowadays, 
chemometrics plays a central role in the authentication of 
edible fats [24]. Goodacre and Anklam used FT-IR 
spectroscopy coupled with chemometrics to identify cocoa 
butter adulterated with other vegetable oils [25]. Yang and 
collaborators applied FT-IR, NIR and Raman spectroscopy for 
the discrimination of edible oils and fats [26]. Bassbasi et al. 
coupled FT-IR and PLS-DA to identify the geographical 
origin of butter [27].  

In the last decade, several studies on the combination of 
spectroscopic techniques and chemometrics to identify 
adulterated butter samples have been published. Koca et al. 
applied PLS-R to FT-IR analysis to quantify the amount of 
margarine in adulterated butter samples. For this, four 
calibration models were elaborated, using samples with 
different contents of margarine in butter as calibration set (0-
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5%, 0-25%, 20-60% and 0-100% v/v). The prediction ability 
of these four models were tested against an external validation 
set composed of adulterated butter samples with an amount of 
margarine of 2.5%, 13% and 45% (v/v), respectively. The best 
prediction results were reached using calibration sets of small 
adulteration ranges, compared to the performance of the 
calibration set consisting of the whole range of adulteration 
levels [28]. Mabood et al. investigated several multivariate 
methods (e.g. PCA, PLS-DA and PLS-R) to determine tallow 
adulteration in clarified butter using NIR spectroscopy. Here, 
samples were adulterated in the range between 1% and 20% 
(w/w). By PLS-DA a discrimination between pure butter 
samples and the adulterated ones was achieved; while the 
PLS-R model showed the ability to quantify tallow 
adulteration at a level lower than 2% (w/w) [29]. Fadzlillah et 
al. published several studies in which they coupled FT-IR 
spectroscopy with PLS-R to determine adulterations of butter 
(with beef fat, mutton fat and lard [4], [30], [31]. Nedelijkovic 
and Lohumi applied the PLS-R to Raman spectra to quantify 
and predict the concentration of margarine in adulterated 
butter samples [32], [33]. Besides the work of Koca [28], there 
are no other publications, to the authors’ knowledge, coupling 
FT-IR analysis with chemometrics for the detection of butter 
samples adulterated with margarine.  

The aim of this work was to apply classification and 
discriminant models (PCA, PLS-DA and PLS-R) to FT-IR 
spectroscopic data to develop a simple screening method for 
the non-targeted detection of adulterated butter. PLS-R was 
the better-suited model to correctly identify all butter and non-
butter samples. Its ability to detect the amount of adulteration 
was precise above 7% (w/w) of margarine. 

II. EXPERIMENTAL 

A. Sample Collection and Preparation 

20 butter and 11 margarine samples were purchased in local 
supermarkets in Bolzano (Italy) and Berlin (Germany) 
between July and August 2018. Samples were stored under 
refrigerated (4 °C ± 1 °C) conditions and analyzed within the 
recommended time of consumption. According to the labels, 
butter samples were produced exclusively from cow’s milk. 
Specifically, 20 butter samples were purchased, two of them 
were ghee (or clarified) butter. Samples were chosen as 
different as possible in order to cover a broad variability of 
products and therefore chemical dissimilarities. Butter samples 
were purchased according to their origin of production, type of 
production (biological or conventional) and type of fat (cream, 
sour cream or ghee). Margarine samples were bought trying to 
maximize the differences in terms of composition (type of oils 
used), production (biological or conventional) and added 
ingredients (e.g. vitamins, butter, milk) (Table I). 

57 adulterated samples were obtained by mixing butter and 
margarine at concentration ranges of 1%-50% w/w (Table II). 
Adulterated samples were prepared by randomly choosing 
eight butter and eight margarine samples with the intent of 
maximizing the chemical differences and, thus to obtain 
adulterated samples as different as possible. Pure butter 

samples were labeled as 0%, pure margarine samples as 100% 
and the adulterated butter samples were labeled accordingly to 
their adulteration degree. 

 
TABLE I 

LIST OF BUTTER AND MARGARINE SAMPLES 

Products Origin Notes 

Butter1 Italy C, D 

Butter2 Italy C, D 

Butter3 Germany C, D 

Butter4 Italy C, D 

Butter5 Italy C, D 

Butter6 France C, D 

Butter7 Italy C, D 

Butter8 Italy C, E 

Butter9 Germany C, E 

Butter10 Germany B, D 

Butter11 Italy B, D 

Butter12 Germany C, D 

Butter13 Germany C, D 

Butter14 Turkey C, F 

Butter15 
Butter16 

Germany 
Germany 

C, F 
B,D 

Butter17 France B, D 

Butter18 Germany B, D 

Butter19 Germany B, E 

Butter20 Turkey B, E 

Margarine1 Italy C, PO, CO, RO 

Margarine2 Germany C, SO, LO, RO, PO, VA, VD, VE 

Margarine3 Italy C, PO, CO, RO, VA, VD 

Margarine4 Italy C, RO, CO, LO, VB 

Margarine5 Germany C, SO, CO, M, BU 

Margarine6 Germany C, PO, RO, VD 

Margarine7 France C, SO, CO, VD 

Margarine8 Germany B, PO, CO, SO, BU 

Margarine9 Poland B, RO, PO, CO, LO 

Margarine10 Germany B, SO, PO, CO 

Margarine11 Turkey C, SO, PO, COS, RO, VA, VD, VE, M 

List of butter and margarine samples purchased in Italy and Germany. B = 
biological production, C = conventional production, D = cream butter, E = 
sour cream butter, F = ghee (or clarified) butter, BU = butter, M = milk, CO = 
coconut oil COS = cottonseed oil, L= linseed oil, PO = palm oil, RO = 
rapeseed oil, SO = sunflower oil, VA = vitamin A, VB = vitamin B1, VD = 
vitamin D, VE = vitamin E. 

 
TABLE II 

LIST OF BUTTER, ADULTERATED BUTTER AND MARGARINE SAMPLES 

Set Butter 
samples 

Adulterated samples Margarine 
Samples 

Training 3, 4, 5, 6, 
7, 8, 9, 10, 
12, 13, 14, 
15, 16, 17, 

18 

B10M1 1% - 2% - 5% - 10% - 20% - 30% - 
50% 

B10M5- 1% -5% - 7% - 10% -20% - 30% - 
50% 

B9M1- 1% - 2% - 5% 
B12M2 - 1% - 2% - 7% - 15% - 40% 
B17M3- 1% - 2% - 7% - 15% - 40% 

1, 2, 3, 5, 7, 
10 

  B2M10 - 1% - 2% - 7% - 15% - 40% 
B9M1- 10% -20% - 30% - 50% 

B13M7- 1% - 2% - 7% - 15% - 40% 
Test 1, 2, 11, 

19, 20 
B1M4 - 1% - 7% - 10% - 30% - 40% - 50%

B1M6- 1% - 7% - 10% - 30 - 40% 
B19M4 - 1% - 7% - 10% - 30 - 40% 

4, 6, 8, 9, 11

List of butter, adulterated butter and margarine samples used in the training 
and test set. Adulterated samples were codenamed using the butter and 
margarine codes (e.g. B10M1 is the adulterated sample in which Butter10 and 
Margarine1 were used) and the level of margarine adulteration (% w/w). 
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B. FT-IR Spectroscopy  

FT-IR spectra were collected using a Thermo Nicolet 6700 
spectrometer equipped with a Smart Performer Accessory 
(horizontal attenuated total reflection (HATR) unit, single 
bounce diamond crystal), a Ge-on-KBr beamsplitter, and a 
deuterated triglycine sulfate (DTGS) detector. Prior to sample 
acquisition, a background spectrum of laboratory air was 
recorded and visually checked for remaining solvent or sample 
residues. The spectra were collected using OMNIC 7.4 
software (Thermo Fisher Scientific Software, Germany). 
Spectra were acquired in the 4000–525 cm−1 range with a 
spectral resolution of 4 cm−1 at 40 °C. The background 
spectrum was recorded at the same temperature. 32 scans were 
recorded for each sample. The spectrometer performance was 
checked periodically using a polystyrene standard to verify 
wavenumber accuracy and repeatability. After a sample 
acquisition, the ATR crystal surface was carefully cleaned in a 
three-step procedure using n-hexane, acetone and methanol (in 
the given order), and dried with a lint-free tissue. A 1 min 
waiting period was applied before collecting a new 
background spectrum. Three replicates of each sample were 
measured, resulting in three spectra per sample that were 
exported using the OMNIC software, as previously described 
by Horn et al. recently [15]. 

C. Spectra Preprocessing  

The initial data matrix consisted of 264 spectra, of which 60 
of butters, 33 of margarines and 171 of the prepared 
adulterated butter samples. 

The replicates were averaged and mean centered to have 
one spectrum for each sample. Thus, the final data matrix 
consisted of 88 spectra (20 butter samples, 11 margarine 
samples and 57 prepared adulterated samples).  

Spectra preprocessing and statistical analysis were carried 
out using The Unscrambler X (Camo Software, Norway). 
Baseline correction and standard normal variate (SNV) were 
applied to correct both baseline and scatter effect. Afterwards, 
Savitzky-Golay first derivative (second order of polynomial, 
11 points segment) was applied to the corrected spectra to 
resolve the overlapping bands and enhance the absorbance 
differences.  

Spectral regions that did not provide relevant information 
(4000-3700 cm−1 baseline area, 2799-1800 cm−1 absorption of 
diamond crystal, 682-653 cm−1 disturbing absorption band of 
CO2) were excluded prior to chemometrics, as previously 
described [15]. Thus, multivariate analysis was performed on 
spectra consisted of 1114 data points for the remaining 
spectral regions 3699-2800 cm−1, 1799-683 cm−1, and 652-525 
cm−1. Further analysis was conducted on reduced spectra 
consisting in 312 data points of the fingerprint region (1400-
800 cm-1) only, as previously described [28],[34]. 

D. Training and Test Sets and Multivariate Analysis 

The data set was randomly split into two sub-sets, i.e. 
training and test set to perform multivariate analysis and verify 
model performance (Table II). Training set consisted of 62 
samples (15 butters, 6 margarines, 41 adulterated butter 

samples) and test set of 26 samples (5 butters, 5 margarines, 
16 adulterated butter samples). Unsupervised multivariate 
analysis (PCA) as well as supervised classification (SIMCA, 
PLS-DA) and regression (PLS-R) models were carried out 
using The Unscrambler X (Camo Software, Norway).  

III. RESULTS AND DISCUSSION 

A. FT-IR Spectra of Butter and Margarine 

The FT-IR spectra in the region 4000 – 525 cm−1 of a pure 
commercial butter and margarine sample are shown in Fig. 1. 
 

 

Fig. 1 Spectra butter and margarine sample in the range 4000-525 cm-

1. The fingerprint region (1400-800 cm-1) is highlighted in grey 
 

TABLE III 
MODES OF VIBRATIONS [28], [35] 

Assignment Wavenumber [cm-1] Functional group vibration 

a 3300 O-H symmetric stretching 

b 3005 cis C=CH stretching

c, d 2923, 2850 Asymmetric and symmetric stretching 
vibration of methylene (–CH2) group 

e 1746 Carbonyl (C=O) from the ester linkage 
of triacylglycerol 

f 1650 cis C=C 

g 1465 Bending vibrations of the CH2 and 
CH3 aliphatic groups 

h 1376 Symmetric bending vibrations of CH3 
groups 

i, j 1236, 1163 Vibrations of stretching mode from the 
C–O group in esters 

k 1135 −C-O-C stretching vibration 

l 725 Overlapping of the methylene (–CH2) 
rocking vibration and to the out of 
plane vibration of cis-disubstituted 

olefins 

 
Strong absorption was observed for both butter and 

margarine samples in the range of 3000-2800 cm−1. The broad 
absorption band located at 3300 cm−1 (a) is assigned to the 
hydroxyl stretching vibration of water (O-H). The band related 
to the stretching of –C=CH groups of cis-unsaturation (b) 
reached its maximum height at 3004 cm−1 in the butter sample 
and shifted to 3009 cm−1 in the margarine sample as 
previously reported [28]. The bands assigned to stretching, 
bending and rocking vibration of the methylene group (c, d, g 
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and l) show little differences, in both intensity and shape, 
among butter and margarine samples. In the region 1800–1000 
cm−1 a number of absorption bands related to vibrations of the 
C-O bond of esters are observed. Differences in the 
absorbance in butter and margarine samples became evident 
for the band at 1135 cm−1 (k) assigned to the stretching of the 
C-O-C groups of the bond between glycerol and fatty acid 
ester carbon in triacylglycerol (Table III).  

B. PCA 

In a first step, the 88 spectra were subjected to PCA to 
visualize variations occurring among samples of butter, 
margarine and different adulterated samples. The unsupervised 
model was applied to spectra consisted of 1114 data and of 
312 data points (fingerprint region), respectively. In both PCA 
approaches, pure butter samples were well separated from 

margarine samples on the third principal component. 
Margarine samples were more spread out than butter samples 
probably because of the heterogeneity of their compositions, 
in terms of type and quantity of oils and addition of vitamins. 
The adulterated samples occupied the space between pure 
butter and margarine samples. It is interesting to point out that 
the two ghee butter samples (circled samples) were completed 
separated from all samples, including the pure butter samples. 
Since ghee butters are composed mostly of fat and contain 
almost no water and protein, the FT-IR spectra are quite 
different from the butter samples (Fig. 2, supplemental 
material). Ghee samples were thus considered as outlier and 
PCA and further chemometrics were performed without these 
two samples (resulting in a data set of 86 samples). 

 

 

Fig. 2 Score plots PC3 vs. PC1 (A = spectra consisted of 1114 data points, B = fingerprint region). Circle samples are the two ghee butter 
 

Fig. 3A shows the results of the PCA performed on the 
1114 data points spectra. In Fig. 3C the PCA of the fingerprint 
region is reported. Pure butter (plain circle) and margarine 
(dotted circle) samples formed two clear clusters according to 
the second principal component. Adulterated samples (dashed 
circle) are located between these two clusters. Regarding the 
respective two scores plots, the third component (in the case of 
the 1114 data points PCA) and the second one (in case of the 
fingerprint PCA) seem to be the one associated with the 
content of margarine. To better understand the significance of 
these components, the scores of PC3 (Fig. 3B) and PC2 (Fig. 
3D) were plotted vs. the amount of margarine adulteration in 
the analyzed samples. In case of Fig. 3B (1114 data points) the 
correlation between PC3 scores and the level of adulteration is 
not evident, whereas in Fig. 3D PC2 shows a stronger 
correlation (PCA of the fingerprint region). Here, all pure 
butter samples are characterized by positive values of PC2. By 
contrast, all pure margarine samples score negative values of 
PC2. The trend among the adulterated samples noticeably goes 
in the direction of positive values for lower amount of 
adulteration (from 0% to 20% w/w), to negative values for 
higher amount of adulteration (from 30% to 100% w/w). As a 
result, it is possible to affirm that the samples can be clustered 
into two groups, i.e. pure butter and low-adulterated sample 
vs. high-adulterated samples and margarine, accordingly to 

PC2. 
In Fig. 4 the PC2-loadings plot of the fingerprint PCA is 

shown. The band with the highest intensity is the one at 1135 
cm-1, inducing the clustering between butter and margarine 
samples. As previously discussed (Table III), this signal is 
assigned to the stretching of the C-O-C groups of the bond 
between glycerol and fatty acid ester carbon in triacylglycerol. 
The both FT-IR spectra of butter and margarine showed 
differences in the absorbance in this region. These 
observations are consisting with results previously reported 
[28]. 

C. SIMCA 

After selecting the fingerprint region as the most 
informative for the discrimination among butter, adulterated 
and margarines samples, and having created the PCA model 
without the two ghee butters, a supervised modelling method 
using SIMCA was developed to classify butter and non-butter 
samples. The dataset was split into two sets: (1) the training 
set, used to build and internal validate the model and (2) the 
test set for external validation (Table II). Samples were 
divided into two classes: butter and non-butter (both 
adulterated and margarine samples). One model for each class 
was built performing a PCA. Three latent variables were used 
for the butter samples and six latent variables for the non-
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butter samples. Then, the butter and non-butter samples of the 
test set were classified accordingly. Table IV summarizes the 
classification membership of butter and non-butter samples. 

Samples recognized as member of a class (within the limits on 
sample-to-model distance and leverage) have a star in the 
corresponding column.  

 

 

Fig. 3 Score plots PC3 vs. PC1 (A) and PC2 vs. PC1 (C) and PC3 scores (B and D). A and B are related to spectra consisted of 1114 points; C 
and D to the fingerprint region. Pure butter samples = plain circle; adulterated samples = dashed circle; margarine samples = dotted circle 

 

 

Fig. 4 Loadings plot of the PC2 of the fingerprint PCA 
 
At the 5% significance level, all butter samples are 

recognized by the rightful class model. Thus, no false 
positives are present. However, some samples (all low-
adulterated samples in the range 1% to 30% w/w) are 

classified as belonging to two classes and therefore are 
considered false negatives. Since, SIMCA is a “soft” modeling 
method; a sample can be classified as belonging to multiple 
classes when its residual distance from the model is below the 
statistical limit for different classes. Therefore, pure butter and 
pure margarine samples are correctly classified, while 
adulterated butter samples can be rightfully classified only if 
they contain at least 30% w/w of margarine. 

D. PLS-DA 

Then, a supervised classification model using PLS-DA was 
developed to discriminate among pure butter and non-butter 
samples. Training and test sets were the same used for the 
SIMCA model. Two latent variables were used to build the 
model. R2 and RMSEC (Root Mean Squared Error 
Calibration) values were 0.79 and 0.15% w/w, while R2 and 
RMSEV (Root Mean Squared Error Cross Validation) values 
were 0.73 and 0.17% w/w. The prediction ability of the model 
was tested with the test set of samples. Table V summarizes 
the predicted classification (R2 = 0.73, RMSEP = 0.26%) of 
butter and non-butter samples. It is interesting to point out that 
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the two adulterated samples classified as pure butter contain a 
concentration of margarine between 1% and 7% w/w. 
Accordingly, the threshold for a correct classification was 
calculated at 7% (w/w) of margarine in adulterated samples. 
Thus, the two-class model was found to be a successful tool in 
differentiating between pure and adulterated samples. 

 
TABLE IV 

CLASSIFICATION MEMBERSHIP OF THE SIMCA MODEL FOR THE TEST SET 

  Class  

  Pure Butter Non-butter 

Samples Butter11 
Butter19 
Butter20 

B1M4 1% 
B1M6 1% 
B19M4 1% 
B1M4 7% 
B1M6 7% 
B19M4 7% 
B1M4 10% 
B1M6 10% 
B19M4 10% 
B1M4 30% 
B1M6 30% 
B19M4 30% 
B1M4 40% 
B1M6 40% 
B19M4 40% 
B1M4 50% 
Margarine4 
Margarine6 
Margarine8 
Margarine9 
Margarine11 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
 

 
 
 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

 
TABLE V 

CONFUSION MATRIX OF THE PLS-DA MODEL FOR THE TEST SET 

  Actual  

  Pure Butter Non-butter 

 Pure Butter 5 0 

Predicted Non-butter 2 19 

  

Sensitivity, specificity, PPV and Negative Predictive Value 
(NPV) were calculated for SIMCA e PLS-DA models (Table 
VI). Sensitivity is the ability to classify positive samples to the 
belonging class, in other words, to detect true positives. 
Specificity, on the opposite, is the ability to detect true 
negatives. PPV is a test’s probability to correctly identify true 
positives, avoiding false positives. NPV is a test’s probability 
to correctly identify true negatives, avoiding false negatives 

[36]. 
 

TABLE VI 
CONTINGENCY TABLE FOR SIMCA AND PLS-DA MODELS 

Classification model Sensitivity Specificity PPV NPV 

SIMCA 29.4% 100% 100% 42.9% 

PLS-DA 71.4% 100% 100% 90.5% 

  

Performances of SIMCA and PLS-DA models were similar 
in terms of specificity and PPV, but differ greatly regarding 
sensitivity and NPV. A high NPV indicates the test’s ability to 
minimize false negative results [36]. Thus, to minimize the 
number of pure butter samples classified as non-butter. PLS-

DA seems to be a better performing model for the 
investigation of adulterated butter. 

E. PLS-R 

Another model was developed using PLS-R considering the 
fingerprint region and the actual concentration of margarine in 
butter samples (0%, 1%, 7%, 10%, 30%, 40% and 100% 
w/w). Training and test sets were the same used for the 
SIMCA and PLS-DA models. Kernel algorithm was used and 
the internal validation was performed as k-10 cross-validation. 
The optimum of the PLS-R model was determined according 
to RMSEC and RMSEV. Thus, three latent variables were 
used to build the model. R2 and RMSEC values were 0.85 and 
10.28% w/w, R2 and RMSEV values were 0.82 and 11.83% 
w/w. Table VII shows the results for the prediction (R2 = 0.84, 
RMSEP = 16.54%) of the concentration of margarine (% w/w) 
of the samples used for the external validation. All pure butter 
samples were correctly quantified. Regarding the adulterated 
samples, the prediction of the quantity of margarine was not 
precise for samples containing less of 7% (w/w) of margarine. 

 
TABLE VII 

PREDICTION OF THE CONCENTRATION OF MARGARINE 

 Actual [%] Predicted [%] 

Samples 

0.0 
1.0 
7.0 
10.0 
30.0 
40.0 

100.0 

0.6 ± 0.2 
3.2 ± 2.1 
6.1 ± 3.1 
9.7 ± 1.5 

28.3 ± 2.4 
39.4 ± 2.8 
89.8 ± 12.7 

Prediction of the concentration of margarine in the samples of the 
prediction set. Actual and predicted refer to the actual and predicted 
concentration of margarine in butter samples (in % w/w). Values are 
expressed as mean (%) of different predicted samples ± standard deviation 
(%). 

 
Although the model overestimates the margarine content in 

low concentration adulterated samples (below 7% w/w), it was 
capable to correctly identify all pure and adulterated butter 
samples. As a result, although the model was tested only with 
26 samples, it revealed to be appropriate as a quantification 
tool.  

IV. CONCLUSION 

FT-IR spectroscopy coupled with chemometrics showed to 
be a powerful tool to authenticate pure butter samples from 
adulterated butter samples. Moreover, this approach can be 
used to quantify the adulteration grade of butter with 
margarine. Models can be developed using the fingerprint 
region (1400-800 cm–1). Butter and margarine samples were 
well separated in the PCA model, even if it was not possible to 
differentiate adulterated samples. Although all pure butter 
samples were classified in their rightful class by SIMCA 
approach, nine adulterated samples (between 1% and 30% 
w/w of margarine) were classified as belonging both at the 
butter and non-butter class in the SIMCA approach. Two-class 
PLS-DA model’s (R2 = 0.73, RMSEP = 0.26% w/w) threshold 
was calculated at 7% w/w of margarine in adulterated butter 
samples. Finally, PLS-R model identified correctly all butter 
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and non-butter samples. Regarding its ability to predict the 
amount of adulteration, it was not precise below 7% (w/w) of 
margarine. To the authors’ knowledge, only one study was 
published, describing the application of FT-IR spectroscopy 
coupled with chemometric to estimate the adulteration of 
butter with margarine [28]. Koca et al. focused on the 
development of calibration models to predict butter 
adulterations in samples with adulteration level of 2.5%, 13% 
and 45% (v/v). The authors did not investigate the ability of 
the model to identify authentic butter samples [28]. Although 
the PLS-R model developed in this study is not as precise as 
Koca’s in predicting the adulteration level between 1% and 
7% (w/w), it enables the identification of pure butter samples 
to verify authentic products. 

FT-IR spectroscopy requires minimum sample preparation 
and it is a rapid, sensitive, non-destructive and robust 
technique for the detection and the quantification of margarine 
in butter samples. Thus, FT-IR coupled with PLS-DA and 
PLS-R can be successfully used in quality control analysis for 
the authentication of pure butter samples from adulterated 
ones. 
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