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ABSTRACT

We propose a vector median filter for hyperspectral im-
ages based on a ranking of pixel spectral values. The ranking
of the pixel values is performed in the Fourier domain, based
on the hypothesis that these values represent power spectral
density functions of unknown random processes, under the
assumption that these underlying random processes are sta-
tionary. The employed ordering scheme is a classical lexico-
graphic one. We analyze the displacement maps and compare
the proposed vector median filter against a classical vector
median filter extended to the hyperspectral image case. We
present and discuss the experimental results and then draw
conclusions.

Index Terms— vector median filter, spectra ranking,
power spectral density function, Wiener-Khinchin theorem,
autocorrelation function

1. INTRODUCTION

Vector median filters (VMFs) are deployed for de-noising of
images affected by impulsive noise, as the image acquisition
process is inevitably affected by noise. Thus, their main pur-
pose is to recover as much as possible from the original sig-
nal. In the case of median filtering for multi-dimensional im-
ages, the approaches must take into account the multivariate
or vector nature of the data, as well as the spectral variabil-
ity in the particular case of hyperspectral images. VMFs are
very popular and relatively easy to implement non-linear ap-
proaches. They require the definition of an ordering scheme
for the original vector pixel values in a specified filtering win-
dow. There exist various approaches for vector data ordering
schemes, which have been classified in four groups accord-
ing to [1]: marginal, reduced, partial and conditional, each of
them exhibiting both advantages and disadvantages. For in-
stance, the marginal ordering scheme for color images does
not consider the spectral correlation between color channels
and introduces false colors; the reduced and partial order-
ings rely on pre-orderings, thus they lack the property of anti-
symmetry, or generate perceptual non-linearities due to their
behavior similar to conditional orderings [2].

A series of VMFs have been designed, mostly for ap-
plications on color images [3]. The approaches include:
basic vector filters (Vector Median Filter, Extended Vector
Median Filter [4] [5] or Directional Vector Median Filter
[6]), weighted vector filters (Weighted Vector Median Filter
[7] or Rank Order Weighted Vector Median Filter [8]) and
adaptive vector filters (Adaptive Vector Median filter [9] or
Adaptive based Impulsive Noise Removal Filter [10]). Var-
ious non-linear filtering approaches based on mathematical
morphology exist for color and multivariate images [11],
as the mathematical morphology framework is also based
on imposing an ordering relation on the data to be filtered.
Several morphological frameworks for vectorial data have
been proposed more recently, such as a method based on a
fuzzy generalization of mathematical morphology for color
data [12] and two approaches based on a reduced ordering
[13]. The lexicographic ordering scheme, in particular, has
been used in pseudo-morphological approaches such as the
α-trimmed Pseudo-Morphology [14] and the Maximum Dis-
tance Pseudo-Morphology [15].

Various factors have a negative impact on the quality of
remotely-sensed hyperspectral images. The most important is
the spectral mixing due to low spatial resolution, resulting in
spectral variability which is addressed by a plethora of spec-
tral unmixing approaches [16], among the most recent ones
being the improved linear mixing models like [17] or deep
learning-based [18]. Another factor affecting the geometric
accuracy of high-resolution satellite images is attitude jitter,
caused by the spatial environment and spacecraft instability
during data acquisition [19], with a series of correction meth-
ods having been proposed recently [20] [21] [22].

In this paper, we propose a vector median filter for hyper-
spectral images based on the ranking of hyper-spectral image
pixel values modelled as power spectral density functions [23]
and considering a lexicographic ordering resulting in a global
ordering [24]. In order to compare the behavior of the pro-
posed filter, we extend the classical VMF proposed by Astola
[25] to the case of hyperspectral images. The contributions
are: an ordering performed in the Fourier domain and a lower
computational burden compared to a classical VMF. In Sec-



tion 3 we show experimental results, comparison and discuss
the applicability of the proposed VMF on a widely-known
hyperspectral image. In Section 4 we draw the conclusions.

2. APPROACH

The Wiener-Khinchin theorem [26] states that the power
spectral density function qξ(ω) of a wide-sense-stationary
random process ξ is the Fourier transform of its autocorre-
lation function Rξ(τ). Consequently, considering that the
hyperspectral image pixel values are power spectral density
functions of an unknown random process ξ(t) and, in addi-
tion, continuous functions of the wavelength λ, and making
the assumption that the unknown random process ξ(t) is a
wide-sense stationary random process, thus the power spec-
tral density function does exist and it is a Fourier pair with
the autocorrelation function:

Rξ(τ) = F−1{qξ(λ)} =
+∞∫
−∞

qξ(λ)e
+jλτdλ (1)

Thus, we compute the inverse Fourier transform of the
hyperspectral image pixel values to retrieve an estimate of the
autocorrelation function Rξ(τ). In order to design our vector
median filter for hyperspectral images, we define a lexico-
graphic order for the values of the estimated autocorrelation
functions R1(τ) and R2(τ) for any two pixels P1 and P2 in
the hyperspectral image as follows:

P1 < P2 ⇔ (2)
R1(0) < R2(0),
R1(0) = R2(0)&R1(1) < R2(1),
R1(0) = R2(0)&R1(1) = R2(1)&R1(2) < R2(2),
· · ·

The ordering is enforced in the Fourier domain. In order
to apply the proposed ordering for color pixels in the frame of
a vector median filter, we consider the implementation of the
filter in a common 3× 3 window with the origin in the center.

For comparison, we chose the VMF proposed by Astola
[25], which we briefly remind here. In [25] the median vec-
tor is proved to correspond to the one which minimizes the
sum of distances from one pixels to the others from the filter-
ing window. If within the analysis window there are N pixels
denoted P1, P2, P3, · · · , PN , the median M is the one mini-
mizing the cumulative distance to all the other N − 1 pixels:

M = argmin
i
Di =

N∑
j=1

d(Pi − Pj) (3)

In order to extend this approach to the case of hyperspec-
tral images, the distance d in eq. (3) must be specified ap-
propriately. We deployed two distances: the spectral angle
measure (SAM) [27] and the Euclidian distance.

3. EXPERIMENTAL RESULTS

In this section we analyze the behavior of the proposed VMF,
comparing it against the Astola VMF extended to hyper-
spectral images, from the point of view of the displacements
induced in the pixel position due to the deployed ordering
scheme and the choice of the median vector value. We con-
sider a widely-known hyperspectral image, Pavia University,
consisting of 103 spectral bands, captured by the ROSIS
sensor. In Fig. 1 we illustrate the color mapping of the con-
sidered displacements, assuming a parallax disparity of each
pixel possibly in both along-track and cross-track directions:
black for the pixels that remain in the same position after the
median filtering, yellow for pixels that were displaced from
neighboring pixels situated at a spatial distance of 1 and red
for the pixels moved from locations at a

√
2 spatial distance.

The displacement maps were produced using this color map-
ping scheme. Other color mappings can be defined, based
on the scheme deemed necessary in choosing the VMF to be
employed in the respective application.
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Fig. 1. Color mapping of the 3× 3 vicinity.

In Fig. 2 we show the median fitering results on the Pavia
University image, with the corresponding pixel displacement
maps. One may notice that the results obtained with the pro-
posed VMF are very similar with the ones obtained with As-
tola VMF using SAM and that for both of them most of the
pixels that remained on the same position (black pixels) are
usually located along the image edges. For the Astola VMF
using Euclidian distance, the displacements are more or less
random with uniform distribution, except for the regions cor-
responding to the painted metal sheets. For clarity, the results
on two crops of the image are depicted in Figs. 3 and 4.

In Table 1 we show the percentages of black, yellow
and red pixels in the displacement maps in Fig. 2, showing
once more the similar behavior between the proposed and
SAM-based Astola VMFs. Table 2 depicts the percentage of
matched pixels between pairs of displacement maps in Fig. 2;
basically we compute the percentage of pixels which have the
same color (black, yellow or red) in the displacement maps.

0 1
√
2

Proposed VMF 25.19 % 37.71 % 37.10 %
Astola SAM 24.59 % 39.87 % 35.53 %
Astola Euclid. 13.22 % 44.19 % 42.59 %

Table 1. Percentage of displaced pixels for Pavia Univ.



(a) Proposed VMF (b) Astola SAM (c) Astola Euclid.

Fig. 2. Experimental results on Pavia Univ.: images (top) and
displacement maps (bottom).

In order to assess the quality of the filtered images, we
employed the Structural Similarity Index Metric (SSIM) [28],
computed on the color versions, using the unfiltered image as
reference. The values obtained on the Pavia University im-
age are presented in Table 3. They indicate that the proposed
VMF produces the result that is the closest perceptually to the
original, when visualized as a color image.

4. CONCLUSIONS AND FUTURE WORK

We proposed a vector median filter for hyperspectral images
based on the pixel spectral values ranking, considering that
the hyperspectral image pixel values represent power spec-
tral density functions of unknown random processes. Assum-
ing their stationarity, we invoked the Wiener-Khinchin the-
orem for retrieving the corresponding autocorrelation func-
tions through the inverse Fourier transform. We then imposed
a lexicographic order to the autocorrelation functions. We

Matching 0 1
√
2 Total

P.VMF, A.SAM 7.11% 13.86% 15.57% 36.54%
P.VMF, A.Euclid. 3.75% 16.97% 16.06% 36.78%
A.SAM, A.Euclid. 5.80% 21.25% 18.49% 45.54%

Table 2. Percentage of identical pixels between pairs of dis-
placement maps for Pavia Univ.

(a) Proposed VMF (b) Astola SAM (c) Astola Euclid.

Fig. 3. Experimental results on Pavia Univ. (crop1): images
(top) and displacement maps (bottom).

(a) Proposed VMF (b) Astola SAM (c) Astola Euclid.

Fig. 4. Experimental results on Pavia Univ. (crop2): images
(top) and displacement maps (bottom).

compared the proposed vector median filter against a classi-
cal vector median filter extended to the hyperspectral image
case. We investigated the behavior of the proposed filter in
terms of statistics of displacements and structural similarity.
We report on the experimental results and conclude that the
proposed VMF can be a valid candidate and the displacement
maps can be an effective tool for choosing the VMF for the
considered application. As future work, we shall investigate
the capabilities of the proposed filter in a denoising or attitude
jitter correction application, as well as a pre-processing stage
for spectral variability reduction for unmixing approaches.

SSIM
Proposed VMF 0.9193
Astola SAM 0.9043
Astola Euclid. 0.8723

Table 3. SSIM values on Pavia Univ.



5. REFERENCES

[1] V. Barnett, “The ordering of multivariate data,” Journal of the
Royal Statistical Society, vol. 139, no. 3, pp. 318–355, 1976.

[2] M. Ivanovici, A Caliman, N. Richard, and C. Fernandez-
Maloigne, “Towards a multivariate probabilistic morphology
for colour images,” in Proceedings of the 6th European Con-
ference on Colour in Graphics, Imaging and Vision, Amster-
dam, the Netherlands, May 6-9 2012, pp. 189 – 193.

[3] R. Chanu and Kh. M. Singh, “Vector median filters: A sur-
vey,” IJCSNS International Journal of Computer Science and
Network Security, vol. 16, no. 12, pp. 66–84, 2016.

[4] K. Oistamo T. Viero and Y. Neuvo, “Three-dimensional
median-related filters for color image sequence filtering,” IEEE
Transactions on Circuits and Systems for Video Technology,
vol. 4, no. 2, pp. 129–142, 1994.

[5] R. Wichman, K. Oistamo, Q. Liu, M. Grundstrom, and Yrjo A.
Neuvo, “Weighted vector median operation for filtering multi-
spectral data,” in Visual Communications and Image Process-
ing ’92. International Society for Optics and Photonics, 1992,
vol. 1818, pp. 376 – 383, SPIE.

[6] S. Vinayagamoorthy, K. N. Plataniotis, D. Androutsos, and
A. N. Venetsanopoulos, “A multichannel filter for tv signal
processing,” IEEE Transactions on Consumer Electronics, vol.
42, no. 2, pp. 199–205, May 1996.

[7] D. G. Karakos and P. E. Trahanias, “Generalized multichan-
nel image-filtering structures,” IEEE Transactions on Image
Processing, vol. 6, no. 7, pp. 1038–1045, July 1997.

[8] B. Smolka, “Adaptive rank based impulsive noise reduction in
color images,” in 4th International Conference on Communi-
cations and Electronics (ICCE), Aug 2012, pp. 355–359.

[9] R. Lukac, “Adaptive vector median filtering,” Pattern Recog-
nition Letters, vol. 24, no. 12, pp. 1889 – 1899, 2003.

[10] B. Smolka and K. Wojciechowski, “On the adaptive impulsive
noise removal in color images,” Archives of Control Sciences,
vol. Vol. 15, no. 1, pp. 117–131, 2005.
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