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ABSTRACT

Thanks to the abundant spectral bands, hyperspectral videos
(HSVs) are able to describe objects at material level, i.e., the
physical property, providing more benefits for object track-
ing than color videos. Considering limited HSV dataset for
training, a band attention aware ensemble network was re-
cently proposed for hyperspectral tracking, which leverages
band attention to select several three-channel images for deep
hyperspectral tracking. However, it fails to fully consider
the joint spectral-spatial-temporal information in HSVs, com-
promising its tracking performance in challenging scenarios.
To this end, we introduce a spectral-spatial-temporal atten-
tion neural network (SST-Net) for hyperspectral tracking in
this paper. Specifically, the spatial attention with convolution
and deconvolution structure focuses on the salient spatial fea-
tures. Moreover, the temporal attention with an RNN struc-
ture is adopted to depict the temporal relationship among ad-
jacent frames. By combining the spatial, spectral, and tempo-
ral attention, the band relationship can be better depicted thus
valuable hyperspectral bands can be better selected for deep
ensemble tracking. Experimental results show the improved
effectiveness of SST-Net in tracking over serval alternative
trackers.

Index Terms— deep learning, hyperspectral tracking,
spectral-spatial-temporal attention

1. INTRODUCTION

Object tracking plays an important role in computer vision ap-
plications and has recently made great progress ranging from
manual feature-based to deep feature-based [1–3]. However,
these object tracking algorithms implemented in color videos
have inherent drawbacks in describing the real physical prop-
erties of the object. This prevents them from distinguishing
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between targets and backgrounds that are similar in appear-
ance or texture, resulting in limited tracking performance.

In contrast, hyperspectral videos (HSVs) can alleviate
the above problem thanks to their material identification
ability enabled by abundant spectral bands. The existing
hyperspectral tracking algorithms mainly concentrate on the
visual appearance representation of the target. For example,
Qian et al. [4] extracted 3D local cubes around the object
as the convolution kernels for feature extraction. Xiong et
al. [5] embedded the spectral-spatial structure of hyperspec-
tral images (HSIs) into a traditional histogram of oriented
gradients (HOG) which was then combined with global ma-
terial abundance features to describe the object. The above
methods use handcrafted features, which have limited rep-
resentation ability. In contrast, Uzkent et al. [6] converted
HSI into three-channel data to pass the VGGNet network [7]
for deep feature extraction. Unfortunately, the converted
three-channel data unavoidably lose much valuable spectral
information. Alternatively, multiple sets of three-channel
data can be selected. But how to select these bands is an
important issue. Motivated by the ranking based band se-
lection, Li et al. [8] regards the importance of each band
as a criterion and proposed an autoencoder-like band atten-
tion mechanism network (BAE-Net) to learn the nonlinear
spectral relationship to better convert HSI into a number of
false-color images. These converted images were then passed
through several VITAL [9] trackers, yielding several weak
trackers for subsequent ensemble learning to obtain the target
location.

BAE-Net only considers spectral information of the cur-
rent frame but ignores valuable spatial and temporal informa-
tion of HSVs, yielding unstable tracking. In fact, the spa-
tial and temporal information can be used as a supplement
to spectral information to form a stronger object representa-
tion feature. On the one hand, the spatial information helps
to mine the positional relationship of HSI and improves the
ability of band selection. For example, Sun et.al [10] lever-
aged manifold learning to preserve the geometric relationship
of HSIs in low-dimensional subspace for enhanced band se-
lection. On the other hand, spatial information provides the
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Fig. 1. The architecture of SST-Net. The HSI X t at t-th frame are firstly passed into the spectral attention, spatial attention and
temporal attention module to obtain the spectral relationship w. According to the relationship, the bands are then ranked and
rearranged to yield Rt. Subsequently,Rt is divided into a number of three-channel false-color images which are then passed
into VITAL tracker to yield a number of weak trackers. The state of yielded weak trackers are finally summarized by ensemble
learning to produce the object location.

interrelationship between the parts of the current frame and is
proven beneficial for many computer vision tasks, e.g, object
tracking [11] and person reidentification [12].

Besides spatial and spectral information, HSVs also pro-
vide temporal information. Temporal information depicts
interrelationships among adjacent frames and offers very
conducive clues for accurate object localization in many
scene [13]. By learning to fuse useful information over time
for converting HSI into a group of false-color images, the
appearance of the object can be more robustly represented.
This facilitates overcoming drifts compared with only using
the spatial and spectral information in a single frame.

To this end, in this paper, we introduce an end-to-end
spectral-spatial-temporal attention network named as SST-
Net to model the band relationship so as to improve the
appearance representation in HSV and achieve robust track-
ing. As shown in Fig. 1, SST-Net contains three modules
including spectral attention module as in [8], additional spa-
tial attention, and temporal attention module. The spatial
attention takes advantage of convolution and deconvolution
operators to exploit the inter-spatial relationship, enabling to
use of the most valuable object regions for band converting.
Furthermore, an RNN-like architecture is adopted to capture
inter-temporal correspondence and motion changes among
adjacent frames. Such spectral-spatial-temporal attention co-
operates with each other so that the band relationship can
be better modeled, facilitating extracting the most informa-
tive hyperspectral features for tracking. Experimental results
show that SST-Net surpasses BAE-Net to a large margin and
achieves state-of-the-art tracking performance.

2. PROPOSED SST-NET

In this section, we will describe the details of SST-Net, in-
cluding BAE-Net, spatial attention and temporal attention
modules.

2.1. BAE-Net: Spectral Attention Module

Our method is based on the framework of BAE-Net. BAE-Net
takes advantage of spectral attention to rank the bands so that
bands with higher importance are grouped to formulate three-
channel images for feature extraction. The spectral attention
is obtained by a sequence of two convolutional operations and
two transposed convolutional operations. Let xn ∈ N1×C

be the pixel of the HSI, where C represents the number of
hyperspectral bands. The spectral attention module can be
formulated as:

wspectral = s(fp(σ2(σ1(xnA1)A2A
T
2 )A

T
1 )) (1)

where σ represents the ReLU activation function, A1 and A2

represent the parameters of 1× 1 convolution operation, like-
wise AT

1 and AT
2 , fp is the global average pooling operation,

and s(•) represents the softmax normalization.
However, BAE-Net only takes spectral attention into con-

sideration but ignores the valuable spatial information and
temporal information. The ignorance of spatial and tempo-
ral information makes BAE-Net prone to many complicated
scenes such as occlusion and illumination changes. There-
fore, we add spatial attention and temporal attention to BAE-
Net and then construct the spectral-spatial-temporal attention
network shown in Fig. 1 to better convert HSI into a group of
three-channel images for deep hyperspectral tracking.



2.2. Spatial Attention Module

The spatial interference from the surrounding background is
not uncommon in object detection. Spatial attention aims
to assign different weights to different spatial locations so
that the network focuses on the salient region and suppresses
learning from annoying backgrounds. As shown in Fig. 1,
three convolution operations and two deconvolution opera-
tions followed by a ReLU activation function are first applied
along the spatial axis to encode the inter-spatial relationship
of HSI. After that, an average-pooling operation along the
channel axis is used to summarize the relationship across spa-
tial, producing the refined attention map for band converting.
In short, the spatial attention can be mathematically expressed
as:

wspatial = fp(dconv2(dconv1(conv3(conv2(conv1(X ))))))
(2)

where conv and dconv respectively represent convolution and
deconvolution operations with a ReLU activation function,
and fp represents the global average pooling.

2.3. Temporal Attention Module

In addition to spatial attention and spectral attention, we also
integrate the motion changes information into the network by
a temporal attention module. As in [14–17], we also adopt
an RNN computing unit to model long-term temporal appear-
ance and motion dynamics among adjacent frames. Specifi-
cally, we firstly apply a global average pooling layer on X t to
yield xt. After that xt is passed into an RNN architecture to
produce the temporal attention wtemporal. The RNN architec-
ture can be mathematically represented by

mt = σ(Bm ∗ xt +Am ∗mt−1)

nt = σ(Bn ∗ xt +An ∗mt−1)

m̂t = σ(B ∗ xt +A ∗ (mt−1 � nt))

mt = (1−mt)�mt−1 +mt � m̂t

(3)

where A, B, Am and Bm are fully connected layers whose
parameters can be obtained by end-to-end training, and � is
element-wise multiplication.

Here, nt gate masks the previous memory mt−1 to al-
low the previous state to be forgotten or not which is then
merged with the input at current frame to produce a candi-
date memory m̂t. mt is a gate corresponding to memory and
determines how to combine historical information mt−1 with
current frame m̂t to generate a new memory.

2.4. Ensemble Tracking

The spectral weight matrix generated by spatial attention,
spectral attention and temporal attention modules are then
averaged to produce the importance of bands w. After that
the HSI is divided into a number of three-channel false-color

images according to w to pass into state-of-the-art tracker
VITAL, generating a set of weak trackers. The determined
location is obtained by averagely weighting the locations pro-
duced by the weak trackers. Therefore, the loss function for
SST-Net is defined by

L =
1

bL/3c

bL/3c∑
i=1

Li (4)

where bL/3c indicates the number of groups, Li represents
the VITAL loss function from i-th weak tracker.

3. EXPERIMENTS

We compared SST-Net with the baseline BAE-Net, state-of-
the-art color video trackers and hyperspectral trackers to show
the advantages of our method. Moreover, an ablation study
is also conducted to demonstrate the effectiveness of spatial-
temporal-spectral attention network in hyperspectral object
tracking.

3.1. Experiment Settings

All the experiments were conducted on the dataset provided
by hyperspectral object tracking competition 1. The dataset
contains 40 videos for training and 35 videos for testing each
of which includes hyperspectral, false-color and RGB videos
under the same scene. The spectral attention and spatial atten-
tion module were pre-trained offline on the training set. The
temporal attention is trained on the first frame when tracking.
If the score is less than a given threshold, obtained through
extensive cross-validation experiments, all the three attention
modules are adjusted to adapt to the scenario changes. The
learning rate for the SST-Net model was set to 0.005. All
the competing trackers are evaluated using the precision plot,
success plot, and area under the curve (AUC) [18] of one pass
evaluation (OPE).

Table 1. Ablation Study of SST-Net. Red and blue mark the
top two values.

Method AUC
baseline 0.6061

baseline+spatial 0.6190
baseline+temporal 0.6101

baseline+spatial+temporal 0.6230

3.2. Ablation Study

Here, we perform an ablation study to show the effectiveness
of proposed components by evaluating four variants of our ap-
proach on hyperspectral videos. The baseline is implemented

1https://www.hsitracking.com/



Table 2. AUC comparison with state-of-the-art color trackers. Red and blue mark the top two values.

Video SST-Net BACF [19] fDSST [20] KCF [21] VITAL [9] C-COT [20] CFNet [3]
Color n/a 0.5315 0.4639 0.3769 0.5759 0.6020 0.5596

Hyperspectral/False-color 0.6230 0.5440 0.4416 0.4078 0.6047 0.5572 0.5426

with only spectral attention. In order to ensure fairness, all
the parameters are set to the same for four cases. Table 1
presents the tracking accuracy with respect to the AUC score.
Thanks to the merits of suppressing the interference from un-
informative regions and promote learning from important re-
gions, the combination of spatial attention and spectral at-
tention surpasses baseline to a large margin. The temporal
attention is able to capture the motion changes among adja-
cent frames, yielding a better AUC than baseline. Moreover,
simultaneous consideration of spatial, spectral and temporal
attention allows SST-Net to achieve the best tracking perfor-
mance among all the cases by providing an AUC of 0.6230.
Overall, this study evidently demonstrates the contribution of
the proposed modules.

3.3. Comparison with State-of-the-art Color Trackers

We further compare proposed SST-Net with some recent
state-of-the-art color trackers, including BAFC [19], KCF [21],
fDSST [20], VITAL [9], C-COT [22], CFNet [3]. All the
color trackers are run on both false-color and color videos.
The results of the comparison are shown in Table 2. The
BACF, fDSST and KCF fall behind because they use hand-
crafted features for tracking, limiting their robust feature
representation. Thanks to powerful representation ability,
VITAL, C-COT and CFNet provide better tracking results.
The proposed SST-Net method achieves the highest AUC be-
cause of the comprehensive consideration of spectral-spatial-
temporal information.
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Fig. 2. Comparison with hyperspectral trackers.

3.4. Comparison with Hyperspectral Trackers

We further compare SST-Net against two hyperspectral track-
ers including BAE-Net [8], and MHT [18] to thoroughly
demonstrate the advantages of proposed SST-Net. Fig. 2
shows the comparative results of these trackers. Compared

with the MHT method, the BAE-Net method based on data-
driven deep feature has a more robust feature representation.
So, BAE-Net obtains higher tracking accuracy than MHT. But
unlike the BAE-Net, which only considers spectral informa-
tion, the SST-Net simultaneously takes the spectral-spatial-
temporal information to convert HSI and can more effectively
depict the object, yielding the best tracking performance.
Fig. 3 visualizes the tracking results on forest2, pedestrian2
and playground sequences. As can be seen, the proposed
SST-Net also provides the best visual results, implying the
effectiveness of spatial and temporal modules.

SST-Net VITAL MHT BAE-Net GroundTruth

Fig. 3. Demonstrations of visual tracking results.

4. CONCLUSION

Limited training samples make it difficult to train a deep
model for hyperspectral tracking. In order to tackle this
problem, we propose a spectral-spatial-temporal attention
network that takes advantage of available feature extraction
based on three-channel color images for training. The spa-
tial attention module makes the network focus more on the
salient object. The temporal attention module models motion
changes over time. These two modules are then combined
with spectral attention to depicting the relationship among
bands so that the HSI can be better converted for deep feature
extraction. The experimental result shows that our proposed
SST-Net algorithm surpasses the baseline BAE-Net and other
hyperspectral and color trackers, reflecting the effectiveness
of SST-Net in hyperspectral object tracking.
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and Michael Felsberg, “Discriminative scale space
tracking,” IEEE TPAMI, vol. 39, no. 8, pp. 1561–1575,
2016.

[21] Joao F Henriques, Rui Caseiro, Pedro Martins, and
Jorge Batista, “High-speed tracking with kernelized cor-
relation filters,” IEEE TPAMI, vol. 37, no. 3, pp. 583–
596, 2014.

[22] Martin Danelljan, Andreas Robinson, Fahad Shahbaz
Khan, and Michael Felsberg, “Beyond correlation fil-
ters: Learning continuous convolution operators for vi-
sual tracking,” in ECCV, 2016.


