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ABSTRACT 

 

Recent studies have shown that the problem of color trackers 

under challenging situations can be alleviate by the material 

information of hyperspectral image (HSI), which can be 

acquired at video rate by a snapshot mosaic hyperspectral 

camera with spectral filter array (SFA). Due to the specific 

mosaic structure of the acquired images, it is usually 

converted into an HSI cube directly or by demosaicing, 

which will reduce spatial resolution and cause spatial-

spectral distortion. To this end, we propose a novel mosaic 

spatial-spectral tracking (MSST) framework for snapshot 

mosaic HS videos. First, considering the spatial-spectral 

correlation of mosaic HSI, the novel mosaic spatial and 

spectral gradient operators are designed dedicated to raw 

mosaic HSI. Then, mosaic spatial-spectral histogram of 

oriented gradient (MSSHOG) descriptor is constructed by 

exploring the distribution of gradient magnitudes in spatial 

domain and spatial-spectral domain. Finally, MSSHOG is 

further embedded to correlation filters, yielding MSST 

method. The experimental results demonstrate the feasibility 

and effectiveness of MSST. 

 

Index Terms—Snapshot mosaic hyperspectral camera, 

Mosaic spatial-spectral gradient operators, mosaic spatial-

spectral histogram of oriented gradient, Spectral filter array, 

Mosaic spatial spectral tracking. 

 

1. INTRODUCTION 
 

Traditional video tracking often fails in challenging 

situations, e.g. deformation, background clutter and object 

rotation [1]. Hyperspectral image (HSI) [2-3] can 

characterize target with great precision and detail, which can 

handle with the object drift problem caused by the above 

challenges. The early work on HS tracking only used spectral 

information as features [4-6]. Uzkent et al. [7] extract deep 

feature by converting HSI to false-color image. Qian et al. [8] 

extract the feature using the 3D patches selected from object 

area in the first frame. However, these works fail to make full 
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use of spatial-spectral information of HSI, and there is no 

large scale dataset to evaluate tracking performance.  

Currently, Xiong et al. [9] proposed a material-based HS 

tracking (MHT) method and introduced a HS tracking 

dataset acquired by a snapshot mosaic HS camera equipped 

with 4×4 spectral filter arrays (SFA) [11-13]. And in [10] 

further proposed a dynamic material-aware tracking (DMT) 

method. MHT and DMT directly convert the raw mosaic HSI 

into a HS cube to extract material information. However, this 

conversion will reduces the spatial resolution and causes 

spatial distortion. Demosaicing can recover the fully-defined 

HS cube without reducing spatial resolution [14]. However, 

there is a deviation between the estimated values and the 

actual values, which will causes the spatial-spectral 

distortion. In addition, high dimension of fully-defined HS 

cube will bring high computational costs [15]. 

To address the above problem, we propose to extract 

feature directly from raw mosaic HSI, which can avoids 

demosaicing step and preserves spatial resolution. To our 

best knowledge, there is the first time to study the object 

tracking directly in snapshot mosaic HS video. According to 

the structure of SFA pattern, each filter is only sensitive to 

one spectral band, resulting in neighboring pixels associated 

with same band not corresponding to neighboring pixels in 

the actual scene. That is, the neighboring pixels in mosaic 

HSI have the reduced spatial-spectral correlations [16, 17]. 

Therefore, the unique SFA structure should be considered to 

explore the spatial-spectral information of mosaic HSI to 

realize the tracking. 

In this paper, we develop a novel mosaic spatial-spectral 

tracking framework for object tracking in mosaic HS videos. 

Considering the characteristics of SFA, the novel mosaic 

spatial gradient and spectral gradient operators are designed 

to construct the mosaic spatial-spectral histograms of 

oriented gradient (MSSHOG) descriptor to directly extract 

spatial-spectral feature from raw mosaic HSI. The gradient 

operators are based on SFA structure of mosaic HS sensor 

rather than the acquired data, so the proposed descriptor is 

applicable to any SFA pattern. The MSSHOG are further 

integrated into correlation filters, yielding the MSST method. 
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Extensive experiments on mosaic HS videos show that 

MSST exhibits a better performance than the advanced 

trackers. 

 

 

Fig.1 The construction flowchart of MSSHOG descriptor. 

 

2. METHODOLOGY 

 

This section describe the details of MSST method.  

 

2.1. Mosaic Spatial-spectral Histogram of Oriented 

Gradients 

 

Considering the spatial-spectral aliasing information 

among the pixels of SFA pattern, we build MSSHOG 

descriptor to directly extract spatial-spectral feature from 

mosaic HSI. Fig. 1 shows the construction flowchart of 

MSSHOG descriptor. Given a mosaic HSI X Y

MI R   

containing X Y pixels and K bands, the construction of 

MSSHOG descriptor is described as follows. 

Mosaic spatial gradient: To computation the mosaic spatial 

gradient dedicated to the raw mosaic HSI, we first design the 

mosaic spatial gradient operators including mosaic vertical 

and horizontal gradient operators by analyzing the spatial-

spectral correlation in local neighborhood of mosaic image. 

For simplicity, a regular grid both horizontally and vertically 

is used to obtain the spatial and spectral correlation. The 

spatial correlation is computed by the Euclidean distance for 

each pair of filters if and jf , that is,  ij i jd d f f  for 

, 1,...,i j K ( 1 2K k k  for 1 2k k mosaic pattern). Note that 

all pixels in one mosaic HSI have the same spatial correlation. 

Then, spatial correlation-based horizontal and vertical 

gradient operator d

sxf and d

syf are: 
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where d is neighborhood size, here, d = 8 for illustration 

purposes.        

 Similarly, spectral correlation is represented by spectral 

distance, which is calculated by the absolute difference of 

center frequencies between two bands l and k, that is

l k l kd l l   . For 1 2k k SFA pattern, the SFA can be defined 

as  1 2 1 2, ,..., ,KSFA K k k     (sort by spatial location of 

filters from left to right and top to bottom). il denotes that 

center frequencies of band associated with i position in SFA. 

For the pixel p associate with band k , the set of bands kN

that are associated with the neighborhood of pixel p can be 

represented as 4 3 2 1 1 1 1 1{ , , , , , , , }k k k k k k k k               . Note 

that the neighborhood of p is always associated with the same
kN whatever the location of the pixel p associated with the 

band
k . So corresponding spectral correlation matrix d

kf

can be calculated below for pixel p associated with band k . 
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where
i kd  is the spectral distance between the bands pair 

k

i N  and 
k . 

Based on above, the mosaic horizontal and vertical 

gradient operators d

sxf and d

syf can be represented as: 

d d d

xk sx kf f f                                (3a) 

 d d d

yk sy kf f f                               (3b) 

Then the final mosaic spatial horizontal gradient 
xG and 

vertical gradient yG  can be obtained by summarizing the 

results of convolving the raw image 
MI with the xkf , ykf . 
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Mosaic spectral gradient: The pseudo-panchromatic image 

(PPI) denotes the average image over all channels of HSI and 

is strongly correlated with all channels [14]. The property 

allows us to represent the mosaic spectral gradient through 

the difference between mosaic HSI and PPI. Based on this, 

we designed the mosaic spectral gradient operators to 

directly compute the spectral gradient from mosaic HSI. 

Here, the PPI is estimated by an averaging filter M, which is 

calculated by spatial distance between the central filter and 

other filters in the neighborhood. Take 4×4 SFA as an 

example to represent M.  
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The mosaic spectral gradient can be obtained by the 

following calculation:  

 = [1]l M M M M lG I I M I M I f                    (6) 

where 
lf denotes mosaic spectral gradient operator, and [1] 

represents a 5×5 square matrix with a center pixel of 1, and 

zero elsewhere. 

MSSHOG descriptor: After gradient computation, two 

mosaic spatial-spectral descriptors are constructed upon the 

spatial dimension and spatial-spectral dimension using the 

calculated gradient maps. For first descriptor, the gradient 

magnitude xyM and angle orientation  ,x y are calculated 

by the two mosaic spatial gradient maps. For second 

descriptor, the gradient magnitude xylM and angle orientation

 , ,x y l are calculated by two mosaic spatial gradient maps 

and one mosaic spectral gradient map. The corresponding 

gradient magnitudes and orientations are computed as 

follows.  
2 2

xy x yM G G  ,    1, tan x yx y G G                (7) 

 2 2 2

xyl x y lM G G G   ,    1 2 2, , tan l x yx y l G G G       (8) 

Here, 9 sensitive directions and 18 insensitive directions 

within 360 degrees are used to created orientation maps [18]. 

Then histograms are calculated for each pair of magnitude 

and orientation. Finally, MSSHOG descriptor is obtained by 

connecting the two histograms in the third dimension in 

series. Consequently, vector feature of (9+18+4) ×2 

dimensions is obtained. 

 

2.2 Mosaic Spatial-Spectral Object Tracking 
 

Our MSST is based on Spatial-Temporal Regularized 

Correlation Filters (STRCF) [19], where the spatial and 

temporal regularization is used to alleviate the boundary 

effect. Mathematically, the loss function is expressed as 

follows: 
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Where K is the feature dimension, y is the desired response 

map and th is the correlation filter to be learned at t frame. f 

is the MSSHOG feature map. h follow the solution in [19]. 

 

3. EXPERIMENTS 

 

In this section, we evaluate the effectiveness of the proposed 

MSST tracker relative to advanced trackers. 

  

3.1. Experiment Setting 

 

Dataset: In the experiments, we use the mosaic HS video 

tracking dataset provided by Xiong et al. [9], which is 

acquired using a snapshot mosaic HS camera equipped with 

4×4 SFA. The whole dataset contains 35 fully-annotated 

sequences, which are labelled with associated challenge 

attributes, such as illumination variation (IV), scale variation 

(SV), occlusion (OCC), deformation (DEF), motion blur 

(MB), fast motion (FM), in-plane rotation (IPR), out-of-

plane rotation (OPR), out-of-view (OV), background clutter 

(BC) and low resolution (LR). 

Evaluation Metrics: To describe the evaluation 

performance, this paper use precision plot, success plot, 

distance precision (DP), and overlap precision (OP) [20].  

 

3.2. Evaluation comparison with color trackers 

 

This experiments compare our MSST with 9 state-of-the-art 

color trackers, including five deep learning based trackers 

STRCF [19], GFSDCF [21], CFWCR [22], ECO [23], UDT 

[24] and MCCT [25], and three hand-crafted feature based 

trackers CACF [1], KCF [26], Autotrack [27]. For fair 

comparison, color trackers and our tracker are performed on 

the raw mosaic HS videos. Fig. 2 reports the precision and 

success plots of all trackers. Overall, our MSST outperforms 

all comparison trackers on both metrics. Compared with the 

second ranked tracker MCCT, our MSST achieves the 

improvements by 2.8% and 4.0% in precision rate and 

success rate due to the full use of the mosaic spatial-spectral 

information. This also implies that deep feature and hand-

crafted feature based color trackers may fails to exploit 

spatial-spectral information of mosaic image since the color 

image structure is different with mosaic image. It is worth 

mentioning that the MSSHOG based MSST obtains a 

significant improvement over the original baseline STRCF 

with CNN feature, and provides a gain of 3.7% and 5.1% in 

average precision rate and success rate. 

   
  Fig. 2 Comparison with color trackers on mosaic videos. 

 

3.3. Evaluation comparison with hyperspectral trackers 

 

This section compare our MSST with two hyperspectral 

trackers, DeepHKCF [7] and MHT [9]. All HS trackers are 

run on the estimated fully-defined HS cube video obtained 

by performing demosaicing on raw mosaic HS video. Here 

we use WB method to demosaic since it is the most generic 

method. Fig.3 shows the comparison on precision and 



success plot. It shows that DeepHKCF give inferior accuracy, 

mainly because it converts HSI into a three-channel false-

color image. Compared with MHT, our method performs 

better performance since it considers the spatial-spectral 

aliasing correlation to directly extract feature from raw 

mosaic HSI. The reason for the low performance of MHT 

may be the spatial-spectral distortion caused by demosaicing 

process. We also show the comparison in DP and OP in 

Table II, which shows the same results with Fig.3. 

 
Fig. 3 Comparison with hyperspectral trackers.  

 

3.4. Attribute based comparison 

 

Table II reports the attribute based comparison results of all 

trackers. Here only presents the performance of top seven 

trackers mentioned above. We can find that our MSST is 

more competitive than the other trackers for handling 

challenging issues. It ranks the first on 6 out of 11 attributes. 

Compared with the second-ranked MHT tracker, MSST 

performs better in BC, IPR, OPR, MB, LR, and OV, which 

further demonstrates our MSST can not only enhance the 

robustness of spatial-spectral features, but also avoid the 

adverse effects of demosaicing. Additionally, the 

improvement of our method is more obvious compared with 

color trackers, which is due to the fact that the color trackers 

fails to exploit spatial-spectral aliasing information of 

mosaic HSI. In addition, it outperform STRCF on most 

attributes, which further show the effectiveness of our 

method and the feasibility and necessity of obtaining feature 

information directly from the raw mosaic HSI. In summary, 

our method has obvious advantages in handling various 

challenges problems over other features. 

Table I Comparison With Hyperspectral Trackers in DP and OP. 

 MSST MHT DeepHKCF 

DP 0.674 0.663 0.150 

OP 0.742 0.723 261 

Table II Attribute-Based Comparison in Average Success Rate 

 MSST MHT[9] ECO[23] MCCT[25] STRCF[19] CFWCR[22] GFSDCF[21] Autotrack[27] 

SV 0.569 0.578 0.501 0.567 0.523 0.556 0.494 0.554 

MB 0.684 0.556 0.596 0.574 0.586 0.540 0.524 0.558 

OCC 0.556 0.576 0.530 0.513 0.505 0.542 0.499 0.524 

FM 0.530 0.536 0.422 0.593 0.565 0.560 0.510 0.572 

LR 0.493 0.442 0.397 0.485 0.371 0.438 0.394 0.463 

IPR 0.697 0.667 0.620 0.685 0.692 0.681 0.622 0.659 

OPR 0.699 0.679 0.629 0.660 0.652 0.677 0.626 0.642 

DEF 0.629 0.628 0.618 0.630 0.640 0.648 0.602 0.646 

BC 0.646 0.620 0.595 0.538 0.561 0.579 0.613 0.527 

IV 0.486 0.505 0.433 0.478 0.376 0.514 0.375 0.492 

OV 0.661 0.624 0.638 0.592 0.485 0.591 0.364 0.649 

 

 

Fig. 4. Qualitative evaluation on three video sequences (i.e., campus, drive, 

and pedestrian2). 

 

3.5. Visual Comparison 

 

Fig.4 shows the qualitative evaluation of MSST, MHT and 

STRCF on three representative videos, in which there are 

background clutter, rotation, illumination various, low 

resolution.  From Fig. 4, it can see that our MSST performs 

well in the whole sequence whereas other trackers have some 

deviations in scale and position or make the object drift to 

background. Overall, our MSST have the ability to handle 

with some challenges in tracking.  

 

4. CONCLUSION 

 

This paper presents a novel generic novel mosaic spatial-

spectral tracking (MSST) framework that can be used for any 

SFA pattern. In MSST, based on SFA structure, the mosaic 

spatial and spectral gradient operators are designed to 

directly extract the spatial-spectral feature from raw mosaic 



HSI. Then, by exploring the distribution of gradient 

magnitudes in spatial domain and spatial-spectral domain, 

respectively, a mosaic spatial-spectral histogram of oriented 

gradient (MSSHOG) descriptor is constructed. Finally, 

MSSHOG is further embedded to correlation filters, yielding 

the MSST method. Experimental results on mosaic HS video 

dataset show that the effectiveness of our method and the 

feasibility and necessity of extracting feature information 

directly from the raw mosaic HSI. 
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