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ABSTRACT 

 

In the last decades, remote sensing sensors, such as 

hyperspectral systems or LiDAR scanners, have been used 

for urban mapping. However, an analysis in the urban 

environment is very complex in applications, e.g., road 

detection, city management, and urban planning. One of the 

important urban features is the detection of the road edges. 

In this study, an approach on multisensory hyperspectral and 

LiDAR data fusion (HL-Fusion) is introduced for road edge 

detection using different machine learning algorithms, such 

as Support Vector Machines, Random Forests, and 

Convolutional Neural Networks. The first results show that 

the Random Forest algorithm outperformed in the 

experiments on the study area at Oslo's surroundings in 

Norway. This study opens a window for further 

investigation on machine learning algorithms and a better 

understanding of HL-Fusion capabilities. 

 

Index Terms— Hyperspectral, road edge detection, 

LiDAR, machine learning, data fusion, remote sensing 

 

 

1. INTRODUCTION 
 

Precise, cost- and time-efficient urban mapping has been an 

essential task for city management, navigation systems 

development, and more. One of the advanced methods in 

urban classification is airborne-based image analysis. In 

particular, road detection and road edge detection have 

proven to be crucial in each of those applications. Road 

edge detection has already been investigated in the computer 

vision research field using airborne-based RGB [1] and 

grey-scale images for rural areas [2]. For the automatic road 

detection approach from RGB-based images, diverse 

methods have been proposed [3, 4]. Although the RGB 

systems analysis is a conventional computer vision method, 

exceeding the visible range (0.4 – 0.7 μm) of the 

electromagnetic spectrum enables the use of multi- or 

hyperspectral imagery and dense spectral sampling for the 

latter [5].  

In the last decades, active and passive remote sensing 

has been widely used for urban analysis, such as landcover 

mapping, urban planning, urbanization changes, 

biodiversity, and road detection [6]. Active remote sensing 

such as Light Detection and Ranging laser scanner (LiDAR) 

provides geometric and textural properties of targets and 

precise elevation extraction in a time-efficient way for large 

areas [7]. The elevation information can be used to 

differentiate between road and curbside. However, the 

automated classification of exact road edges based on 

LiDAR data is challenging due to its low spatial resolution 

and commonly one available wavelength, limiting the 

classification of complex urban structures based on their 

spectral signatures. 

In comparison, the benefit of using passive remote 

sensing, such as hyperspectral imaging, is the ability to 

recognize the material properties due to its unique 

absorption features, called spectral fingerprints in the visible 

and near Infrared (VNIR: 0.4 – 1.0 μm) and the short wave 

Infrared (SWIR: 1.0 – 2.5 μm) [8,9].  

The strategy to apply hyperspectral and LiDAR data 

fusion (HL-Fusion) has already been proposed by 

Weinmann et al. [10] for a small urban area. Their approach 

was to apply color and spectral information from VNIR 

hyperspectral and shape information from the LiDAR 

dataset for urban object classification, such as road, 

buildings, sidewalk, and vegetation. However, combining 

elevation information from LiDAR, such as normalized 

Digital Surface Model (nDSM), high spectral and spatial 

information from hyperspectral data (VNIR and SWIR), can 

help to deliver robust and accurate road edge mapping that 

includes spectral-spatial-elevation context [10, 11].  

Machine learning algorithms are currently used to 

classify urban objects based on remotely sensed data. 

However, different algorithms achieve the best results when 

detecting different features. Therefore, knowledge is 

required on the features to be appropriately classified. 

Standard classifiers in urban landcover classification are 

Support Vector Machine (SVM) and Random Forest (RF). 

SVM handles high dimensional hyperspectral data and deals 

with small training datasets; therefore, it is widely applied in 

the urban analysis based on hyperspectral data [12], LiDAR 

[13], and HL-Fusion [14]. RF provides high accuracy of the 

hyperspectral data classification, high processing speed, 

retaining relevant  spectral  information  without  overfitting 



 

 

 

Figure 1 Training dataset in Sandvika, Oslo 

surroundings in Norway (672x2560 pixels). 

[15]. Moreover, RF has also been used to LiDAR data [16] 

and different HL-Fusion methods reviewed by Debes et al. 

[17].  

A more advanced classification method in deep 

machine learning is Convolutional Neural Network (CNN), 

applied for urban landcover mapping on hyperspectral data 

[17] and HL-Fusion [18], among others. CNN automatically 

learns abstract features and does not require prior 

knowledge about the class distribution in the hyperspectral 

scene [19]. 

In this study, we fuse hyperspectral and LiDAR data to 

extract road edges in Oslo and its surroundings. We apply 

machine learning algorithms, such as SVM, RF, and CNN, 

and compare them to each other in the road edge extraction. 

The structure of this work is as follows. Section 2 

presents the study area. In section 3, the methodology on the 

road edge detection based on HL-Fusion is explained. 

Section 4 provides the results and their discussion. Section 5 

concludes the study and shows future perspectives and 

suggestions for further research. 

 

2. STUDY AREA 

 

The airborne hyperspectral and LiDAR data have been 

acquired simultaneously by the Terratec AS Company in 

August 2019 and April 2020. The dataset contained cloud-

free airborne-based hyperspectral and LiDAR data over 

Bærum municipality near Oslo, Norway. The hyperspectral 

data were acquired using two HySpex sensors: VNIR-1800  

(0.4 – 1.0 μm) and SWIR-384 (1.0 – 2.5 μm) with 0.3 and 

0.7 m spatial resolution, respectively. The LiDAR data were 

acquired using ALS70 and Riegl VQ-1560i, with five 

emitted pulses per m2 and intensity at 1.064 μm. The 

hyperspectral signatures were preserved using Nearest-

neighbor interpolation. The study area shows a complex 

urban environment with various urban objects, such as road, 

vegetation, building, waterbody, train track (Figure 1, 2). In 

our experiments, we divided the study area into smaller 

parts due to the large files and high-dimensionality of the 

data. 

 

 

Figure 2 Test dataset in Sandvika, Oslo surroundings in 

Norway (480x1600 pixels). 

 

3. METHODOLOGY 

 

In this study, the following approach of HL-Fusion for road 

edge delineation was carried out. Two different HL-Fusions 

have been applied: 1) LiDAR and radiance data 2) LiDAR 

and reflectance data. Since the hyperspectral dataset 

contains data from two different sensors, VNIR and SWIR, 

the spatial resolution was unified to 0.3 m pixel size. The 

geocoded radiance data were converted to reflectance, 

adjusting illumination levels using ATCOR-4 (Atmospheric 

and Topographic Correction for airborne imagery) software 

[21]. For the radiance and reflectance data, individually, the 

Normalized Difference Vegetation Index (NDVI) was 

applied to mask the study area's vegetation. Further, the 

Principal Component Analysis (PCA) was applied to 

hyperspectral VNIR and SWIR data to reduce the high 

dimensionality of the data and extract spectrally 

homogeneous regions. The first three principal components 

(PCs) have been used as input for classification algorithms, 

covering 99.5 % variance.   

The LiDAR-derived features include the intensity 

values of 1.064 μm from the first return and normalized 

Digital Surface Model (nDSM). For the HL-Fusion, 

hyperspectral and LiDAR data were geometrically 

coregistered [22]. The nDSM was used to mask out the 

elevated objects, such as trees and buildings. For the road 

edge delineation purpose, the study area's main urban 

objects except for roads have been masked in the image, 

such as train track, waterbody, vegetation (trees, grass), and 

buildings. 

Since we implemented a supervised classification to 

identify roads, train tracks, vegetation, and waterbody, the 

labels have been generated manually pixel-wise directly 

from the training dataset retaining the pixel count similar for 

each class. For this study, the following machine learning 

algorithms, SVM, RF, and CNN, were applied to the 

radiance and the reflectance HL-Fusion data. We split the 

dataset in training – 70 % and testing – 30 %. For the CNN 

model, the training data are split into patches of 9x9 pixels 

each. Three convolution layers with 30 filters and 3x3 filter 

kernel sizes are applied to each patch. To minimize 



 

 

 

Figure 3 The first results for RF on road edge detection based on  HL-Fusion.  

Table 1 Comparison of classification results for reflectance 

(Ref) and radiance (Rad) HL-Fusions. F1 score corresponds 

to the road class. 

 

overfitting and enhance generalization, we add a dropout 

layer. We chose ReLU as the activation function, 

"categorical_crossentropy" as the loss function, and 

Stochastic Gradient Decent (SGD) as the optimization 

algorithm. Since the CNN training requires a large amount 

of data, we applied data augmentation by rotating, zooming, 

and flipping existing images. The final step was to delineate 

the road edges and produce a map with road lines applying 

the Canny Edge detector on the image, maintaining road and 

low vegetation classes. 

 

4. RESULTS AND DISCUSSION 

 

The classification results were evaluated, calculating the 

overall accuracy (OA), F1-score, and computation time 

(CT)  (Table 1). The initial results show that the RF 

classifier outperformed for reflectance and radiance HL-

Fusions compared to SVM and CNN algorithms, achieving 

93 % accuracy (see Table 1). The RF can handle multiclass 

issues, is less sensitive to noise was already used for HL-

Fusion [10]. CNN’s poor performance can be related to 

limited training samples and high-dimensionality of the 

data, leading to overfitting and longer computing time. 

Figure 3 presents one of the first road edge delineation 

results for reflectance HL-Fusion-based RF classification, 

achieving 93 % accuracy. 

However, there are misclassification spots in the road 

delineation results (Figure 3). One of the road detection 

challenges is the lack of identification of smaller roads, 

which can be caused by the too low resolution of the 

hyperspectral images and incorrect shadow classification. 

Another aspect is that the edges of some of the roads are not 

straight, broken, or misclassified. The main reason is that 

the road edges are often covered by buildings or trees in 

airborne-based images due to the inability of hyperspectral 

sensors to penetrate the surface. 

Better F1 score road class results for each classifier for 

radiance data show that the atmospheric correction must not 

be required to achieve high urban object classification 

results. The reason is that any further processing steps can 

lead to artifacts misclassifying targets of interest. However, 

the multitemporal analysis results on radiance data may not 

deliver such a final overall accuracy of the classification 

since the reflectance data are more reliable and repeatable 

than radiance data. 

 

5. CONCLUSION AND OUTLOOK 

 

This study evaluated different machine learning 

classification algorithms for road edge detection based on 

HL-Fusion. Our main objectives were to provide insights 

into the capabilities of using multisensor data fusion in 

urban mapping, considering one of the essential features in 

many applications, such as road edge detection. The 

machine learning-based classifier – RF provided the best 

accuracy results for radiance and reflectance HL-Fusion.  

Although deep learning analysis attracts more and more 

attention, ensemble learning has proved to be the best choice 

in this classification problem. However, we believe that 

deep learning is a promising basis for exploring HL-Fusion 

 SVM RF CNN 

 Rad Ref Rad Ref Rad Ref 

OA [%] 83 92 92 93 80 77 

 F1 [%] 82 77 88 79 60 57 

Time [s] 27.71 5.52 47.64 5.82 450.06 321.5 



 

 

further and combining more algorithms in one analysis to 

improve data reduction, image segmentation, classification, 

and post-processing of the data.  

The next step in this study will be to analyze 

multitemporal radiance and reflectance data from August 

2019, April 2020, and September 2020. The proposed 

method will be tested in an area with known new roads not 

covered by the vector data, especially Oslo and its 

surroundings. 

Further research will also explore how the HL-Fusion 

can be utilized to determine the microtopography along the 

roads and detect curbsides and other urban microstructures. 

We also want to explore deep learning algorithms' potential, 

collecting more training data and other deep learning 

algorithms to extract time-efficiently deep features in the 

spectral-spatial context and object-based classification. 
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