
SUPPORT VECTOR MACHINES FOR UNMIXING GEOLOGICAL MIXTURES 

 
*Maitreya Mohan Sahoo, #Arun P.V., and *Alok Porwal 

 
*Centre of Studies in Resources Engineering, Indian Institute of Technology Bombay, INDIA 

#Remote Sensing Laboratory, SIDEER, Ben-Gurion University of the Negev, ISRAEL 

 

ABSTRACT  

  

In this paper, we describe a Support Vector Machine (SVM) 

based approach for spectral unmixing of intimate geological 

mixtures. In this approach, we use the spectral distance of a 

pixel from the bounding hyperplane for a given endmember 

as a measure of purity of the pixel with respect to that specific 

endmember. The approach is implemented by first 

identifying the pure pixels in the image using various 

algorithms for estimating pixel purity, and then using spectral 

similarity measures to identify the endmembers. The pure 

pixels are then used to train a series of SVMs for all 

endmembers using the “one-against-all” approach. The 

trained SVMs are then used to process all pixels, and the 

spectral distance of each pixel from the bounding hyperplane 

for all endmembers are estimated. The approach is 

demonstrated using a simulated and real-world hyperspectral 

data. The results indicate that our approach outperforms 

linear and bilinear spectral unmixing approaches.  

  

Index Terms— Spectral unmixing, SVM, pure pixels, 

spectral distance.  

  

1. INTRODUCTION 

  

Unmixing of the pixel spectra of hyperspectral images is a 

challenging inversion problem, particularly in the case of 

geological materials because of nonlinear mixing of 

endmembers. Intimate mixing on spatial scales smaller than 

the wavelength of incident photons, results in multiple 

interaction of one photon with more than one endmember[1]. 

Applying linear unmixing models to such complex mixtures 

leads to inaccurate abundance estimation[2]. Unmixing 

techniques such as hierarchical Bayesian estimation[3], block-

coordinate descent algorithm for NMF minimization 

problems[4], and gradient descent algorithm[5] are iteration 

based and require some prior parameter assumptions for 

modeling. Sparse unmixing techniques[6] works well mostly 

for linearly mixed images; they also suffers from the 

drawback of highly correlated spectral signatures in the 

library which over-assigns the number of endmembers 

present in an image. Geometry based approaches such as the  

simplex projection technique[7] considers only a single 

spectra for a pure endmember and does not take endmember 

variability into account. Further, noisy pixels can lie exterior 

to the simplex, and the approximate projection works well 

only for linearly mixed pixels[8]. More recently, machine 

learning algorithms, both supervised and unsupervised, have 

been applied to spectral unmixing by several workers. 

Hopfield Neural Network has been successfully used for 

unmixing nonlinearly mixed images[9]. Kernel ridge 

regression[10] unmixes by mapping a nonlinear spectrum to a 

linear one using kernel functions. Deep learning 

architectures such as the convolutional neural networks 

(CNNs)[11] learn the feature maps at each convolution stage 

and perform comparable sub-pixel mapping. However, most 

of the supervised machine learning approaches including 

deep learning techniques require training samples which are 

practically difficult for real-world data sets.  

  

In this paper, support vector machine is used as a machine 

learning tool to spectrally unmix geological mixtures. Being 

a robust tool, SVMs have the capability to learn features 

using a smaller number of training samples[12]. The main 

objective of an SVM is to segregate the feature space of a 

classified dataset using a discriminative hyperplane, also 

known as a decision surface. This research employs an 

approach using SVM classifier to unmix simulated mixtures 

(linearly and nonlinearly mixed), and remotely sensed 

geological datasets. The unmixing accuracy of the proposed 

approach with respect to prominent base-line unmixing 

approaches is evaluated using available ground truth. Since 

most of the geological materials can be distinguished by 

spectral features along narrow wavelength ranges, our 

proposed approach uses a subspace from the original feature 

space, therefore enhancing computational efficiency by 

feature pruning. Further reduction in feature dimensionality 

is achieved using transformations like principal component 

analysis (PCA) or maximum noise fraction (MNF). It also 

addresses the spectral variability among endmember spectral 

samples used for training SVM. Performance of this model 

is evaluated using various types of non-linearities and 

realworld datasets by comparing with some of the common 

unmixing methods and assessing its accuracy with known 

ground truth data.   

 



2. METHODOLOGY 

 

 Given a hyperspectral image with no prior information about 

its endmember composition or their abundances. The 

spectral unmixing approach proposed in this research is 

summarized in Figure 1. A spectral subset of the image 

diagnostic of absorption features is chosen and preprocessed 

by applying dimensionality reduction algorithms (e.g., 

PCA/MNF) [13] in order to limit the number of endmembers 

and also to reduce noise in the image. The next step is to 

extract pure pixels from the image as they are representatives 

of the endmembers that are present with little or no mixing. 

In this regard, the pixel spectra are projected to convex hull 

based latent space to determine the image end members 

which are further identified by comparing them with a 

spectral library. 

 
Once, the endmembers are identified, a series of SVM 

models are trained using the pure pixels of the image 

endmembers with a “one-against-all” approach. It may be 

noted that to increase the number of training samples, the 

pixels which are spectrally very close to image endmembers 

are also considered for training the SVM. These trained 

SVMs are then used to process all pixels, and the spectral 

distance of each pixel from the bounding hyperplane for all 

endmembers are estimated. For an SVM, the distance from 

the hyperplane is proportional to its functional value, which 

is expressed as: 

  

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∝ 𝑔(𝑥𝑖) = 𝑤. 𝑥𝑖 + 𝑏  

  

where 𝑥𝑖 is the feature vector, 𝑤 is the weight vector 

associated with each feature and 𝑏 is the bias term. For 

simplicity, a spectral subset of the hyperspectral data cube is 

selected followed by transformation to a reduced dimension 

space using MNF transform. 

 

3. EXPERIMENTS 

  

For our experiment on assessing the performance of 

unmixing simulated and real datasets, a subset of real 

dataset’s endmembers was used for generating simulated 

images and training the SVM. The AVIRIS scene of Cuprite 

 

 
 

Figure 1: Flowchart of our proposed methodology 

 

 

Hills, Nevada, which is considered to be a benchmark 

dataset for hyperspectral image analysis, was chosen for 

testing the algorithm with real-world dataset. The Cuprite 

Hills area has been well mapped and sampled. The samples 

have been extensively studied using laboratory 

spectroscopy. It comprises of exposed zones of advanced 

argillic alteration, along with silicified and opalized 

zones[14]. The key mineral assemblages include (1) Fe-

bearing minerals (e.g., chlorite, goethite, hematite, jarosite, 

etc.) which show characteristic spectral absorption features 

centered at 1µm due to crystal field electronic transition; 

and (2) phyllosilicates minerals (e.g., alunite, 

buddingtonite, kaolinite, muscovite, etc.) which have 

various absorption features between 2.0-2.5 µm due to 

molecular vibration of metal-OH bond.  

  

For our simulation dataset, we selected three endmembers, 

namely, Alunite, Buddingtonite, and Chalcedony. Further, 

we selected three for real dataset- Alunite, Chalcedony and 

Na-Montmorillonite endmembers from the Nevada data.  

Spectral absorption features of these minerals are tabulated 

in Table 1. 

Endmember  
Spectral absorption features  

(2.0 – 2.5 µm region)  
Alunite 

KAl3(SO4)2(OH)6 
• 2.16 – 2.22 µm (Al-OH vibration)  

Buddingtonite 

NH4AlSi3O8 .0.5H2O  
• 2.02, 2.12 µm (NH4 vibration)  
• 2.16 – 2.22 µm (Al-OH vibration)  

Chalcedony  
SiO₂  

No absorption feature (Presence of 
metal-OH impurities give some  

absorption)  
Na-Montmorillonite  

Na0.33(Al,Mg)2(Si4O10) 

(OH)2·nH2O  

• 2.16 – 2.22 µm (Al-OH vibration)  
• 2.30-2.36 µm (Mg-OH vibration)  

 

Table 1: Endmembers selected for implementing our proposed unmixing 

model with their spectral absorption features in the SWIR region (2.0 – 

2.5 µm) 

 

3.1. Simulated dataset  

  

Synthetic images were generated by mixing the random 

abundances of the endmembers that were derived using 

spherical gaussian distribution (Figure 2). The spectra of the 

endmembers comprising 48 bands in the SWIR region, were  



 
mixed linearly and also by using four different nonlinear 

mixing models- Fan model[15],  GBM[5], PPNMM[3] (having 

positive and negative nonlinearity parameters), and MLM 

with the mixing parameters used by Heylen and Scheunders, 

2016[16]. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Figure 2: Spectra of selected endmembers obtained from USGS spectral 

library with spectral subset in the SWIR region (2.0 – 2.5 µm) and 

generated abundances for (a) Alunite, (b) Buddingtonite, (c) Chalcedony 

 

Two sets of images were created; one without noise, and the 

other with added independent and identically distributed white 

gaussian noise of SNR 20. The dimensions of the simulated 

images are 100 by 100 pixels and 48 bands. 

 

These datasets were unmixed using the proposed SVM-based 

model and the results were compared with the results obtained 

by linear and bilinear unmixing models. 

 

The performance of the unmixing models were assessed using 

two performance metrics, namely, mean abundance error 

(MAE) with their standard deviation (Table 2) and root mean 

squared error (RMSE) (Table 3). 

The results show that, as compared to the linear and bilinear 

unmixing models, the SVM-based unmixing model 

performs better with the synthetic images, both without and 

with noise. The fully constrained linear unmixing model 

works better only for the linearly mixed images; however, 

for the non-linearly mixed images, it gives error values as 

high as 0.17 (Table 3).  

 

Using the SVM based approach for unmixing images 

without noise, the highest MAE and RMSE was obtained 

for the Fan model (0.12 and 0.15) followed by the GBM 

model (0.06 and 0.08). The bilinear unmixing performs 

better for these models as both these images were generated 

using bilinear mixing. However, for noisy images, the 

proposed SVM-based method outperforms bilinear 

unmixing. Figures 3 and 4 depict the bar plots showing the 

unmixing performances of the three methods. 

 
 FCLU Bilinear SVM 

based 

LMM 1.70E-09 2.05e-7 
(1.95e-7) 

6.67e-9 
(4.88e-9) 

Fan model 0.15776 
(7%) 

7.4e-7 
(4.5e-7) 

0.12313 
(9%) 

GBM 0.1292 
(7%) 

4.5e-7 
(3.62e-7) 

0.06634 
(6%) 

PPNMM1 0.13894 
(8%) 

0.03475 

(3%) 
0.00609 
(0.3%) 

PPNMM2 0.07986 
(7%) 

0.03538 
(3%) 

0.00998 
(0.5%) 

MLM 0.09711 
(8%) 

0.08181 
(8%) 

0.03486 
(4%) 

 
(A) 

 

 FCLU Bilinear SVM 

based 

LMM 2.40E-09 0.17335 

(15%) 

0.01467 

(1%) 

Fan model 0.15786 

(8%) 
0.17335 

(15%) 
0.08328 

(8%) 
GBM 0.12941 

(7%) 
0.17335 
(15%) 

0.02752 
(2%) 

PPNMM1 0.13911 

(8%) 
0.16984 

(14%) 
0.01703 

(1%) 
PPNMM2 0.08219 

(7%) 
0.18288 
(16%) 

0.02012 
(2%) 

MLM 0.09854 

(8%) 
0.17903 
(14%) 

0.04016 

(3%) 

 
(B) 

 

Table 2: MAE obtained for unmixing images: (A) without noise, (B) 

with noise using linear, bilinear and SVM-based unmixing  

 
 



 
(A) (B) 

 
Table 3: RMSE obtained for unmixing images: (A) without noise, (B) with noise using linear, bilinear and SVM-based unmixing 

 

 

 
(a) 

 
(b) 

 
Figure 3: Bar plots showing mean abundance errors for unmixing linearly and nonlinearly mixed images using FCLS, Bilinear and SVM-based 

unmixing: (a) images without noise, (b) images with noise 

 

 

 
(a) 

 
(b) 

 
Figure 4: Bar plots showing RMSE for unmixing linearly and nonlinearly mixed images using FCLS, Bilinear and SVM-based unmixing: (a) images 

without noise, (b) images with noise 

 

 
FCLU  Bilinear  

SVM 

based  
  

FCLU  Bilinear  
SVM 

based  

LMM  
Fan model  
GBM  
PPNMM1  
PPNMM2  
MLM  

3.53E-09  
0.17493 
0.14615  
0.16123  
0.10664  
0.12726  

2.83E-07  
8.67E-07  
5.78E-07  
0.04576  
0.04696  
0.11182  

8.27E-09  
0.15416 
0.08757  
0.00681  
0.01111  
0.05326  

LMM  
Fan model  
GBM  
PPNMM1  
PPNMM2  
MLM  

6.30E-09  
0.17604 
0.14762  
0.16198  
0.10866  
0.12846  

0.22746  
0.22746 
0.22746  
0.21922 
0.24150 

 0.22974  

0.01826 
0.11870  
0.03269  
0.02066  
0.02532  
0.05119  



The plot also shows that the SVM based unmixing works 

well for the transformed dataset. Features transformation 

helps in two ways- (i) it improves identification of pure 

pixels, and (ii) it helps in improving the computational 

performance.  

  

However, real images have larger endmember variability, aa 

well as noise. Also, it is likely to have endmember outliers. 

The above issues have to be addressed for proper training of 

the SVM models. Obtaining representative samples of the 

endmembers directly from an image does not require any 

assumption related to the statistical distribution of their 

spectra. This further eliminates variations which are not 

physically meaningful[17]. However, the accuracy of 

unmixing would also depend on the number of pure pixels 

samples selected for an endmember class and their relative 

location in the transformed feature space. Sample points 

which are clustered and spaced closely are more likely to be 

representatives of endmember pure pixels. 

 

The above issues have been dealt with in the unmixing of real 

dataset. 

3.2. Real dataset  

  

A subset of the AVIRIS reflectance data for Cuprite Hills, 

Nevada, comprising 750 by 614 pixels and 224 bands was 

used for testing the algorithm using real dataset. Bands 12, 

105-115, 150-170 and 223-224 were removed because of 

water-vapor absorption and low SNR. Of the remaining 

bands, bands 175-222 corresponding to 2-2.5 µm (shortwave 

infrared region) were chosen for modelling, because the 

diagnostic absorption features related to Metal - OH 

vibrations lie within this range.  

  

The pure pixels belonging to Alunite, Chalcedony and Na-

Montmorillonite were selected based on their diagnostic 

absorption features as previously listed. 

 

Three SVM models were trained using pure pixels of each of 

the three endmember mineral species. All pixels of the image 

were then processed using the trained SVM and the relative 

abundance of each of the three minerals were estimated for 

each pixel based on the distance to the bounding hyperplane 

as described above in Section 2. The above unmixing results, 

 

 

 
Figure 5: USGS Tetracorder map showing the location of different 

mineral endmembers in the Cuprite region, Nevada (adopted from 

Swayze et. al., 2014) 

Figure 6: Fractional abundance estimations obtained for selected 

endmembers using (A) linear unmixing, (B) bilinear unmixing, and 

(C) proposed SVM based unmixing. (D) shows the Tetracorder 

abundance mapping of these endmembers (scaled from 0 to 1) 

 



as well as those obtained using linear and bilinear unmixing, 

were compared with the results obtained using Tetracorder. 

Since there is limited ground truth abundance information 

available for all pixels, the estimated abundance maps 

(Figures 6- (A), (B) and (C)) were visually compared with 

the published Tetracorder map (Figure 5) and its results 

scaled from 0 to 1 (Figure 6-(D)). Pixels common to 

Tetracorder classification results and the abundance images 

obtained using the proposed method were visually compared. 

Qualitative assessment of our proposed unmixing model by 

visual comparison with the available literatures[6],[18],[19] also 

provided consistency with the results.  

 

4. CONCLUSION 

  

Our proposed method of spectral unmixing using SVM-

based approach worked well for both simulated and real 

datasets. The performance metrics used for evaluating the 

unmixing of synthetic images were MAE and RMSE, and the 

unmixing results for real-world dataset was visually 

compared with the Tetracorder results and available 

literatures for a qualitative assessment. Our developed 

unmixing model only requires pure pixels for training, which 

are sparsely available in any image dataset; this helps in 

better computational performance with comparable results 

produced by other unmixing techniques. SVM model also 

has an added advantage of accommodating spectral 

variations of representative samples of endmembers during 

training; it helps to minimize the unmixing errors. 

 

 

Future scope in developing this model includes training 

datasets with wider variability. Improving the performance 

of the SVM-based unmixing model using fuzzy membership 

values would also help in accurate abundance mapping by 

training a minimal number of mixed pixels. Implementing 

this model to study its performance on images of varying 

noise levels, endmember compositions, mixing models, 

abundance distributions and feature transformations will be 

discussed further in a greater detail. 
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