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ABSTRACT
This paper presents a novel framework for estimating the covariance
and uncertainties of atmospheric parameters and the reflectance
spectra of urban surfaces in high-resolution ground-based hyper-
spectral images. By integrating open source software for atmo-
spheric modeling and statistical sampling, we demonstrate the use of
Markov Chain Monte Carlo (MCMC) sampling to quantify the full
posterior distributions in a joint fit of both molecular concentrations
for atmospheric attenuation and parameterized surface reflectance to
spectroscopic observations of an urban scene. We present a use case
at visible and near-infrared wavelengths (0.4-1.0 micron) in ∼850
spectral channels where the uncertainty in atmospherically corrected
surface reflectance of vegetation in the scene is acquired by propa-
gating the uncertainties obtained from modeling the reflectance of a
nearby building surface.

Index Terms— Remote Sensing, Hyperspectral, Albedo, Atmo-
spheric Correction, MCMC, Atmospheric Parameter Covariance

1. INTRODUCTION

Hyperspectral imaging (HSI), capable of capturing the intensity for
each pixel in an image in hundreds of wavelength channels, has
emerged in the past two decades as a precise, non-invasive, and ver-
satile tool used in a variety of domains. In the context of urban
science, hyperspectral imaging has been employed for a wide range
of applications including the identification of surfaces and materi-
als [1, 2], monitoring the health of vegetation [3, 4, 5], identifica-
tion of plant species [6, 7], and the detection of atmospheric com-
ponents and trace gases along the line of sight [8, 9]. While most
remote sensing studies utilize hyperspectral imaging from satellite
and aerial imaging [10, 11], more recently, ground-based, stationary
side-facing observatories [12, 13, 14, 15] have been gaining momen-
tum due to their cost-effectiveness and increased spatial resolution.

In daytime hyperspectral imaging at visible and near-infrared
(VNIR) wavelengths of 0.4-1.0 micron, solar radiation interacts
with the atmosphere and the imaged foreground object, undergoing
significant modifications before it reaches the sensor. A spectrum
recorded by ground-based VNIR spectrometers is the product of
three main wavelength-dependent components: the incident solar ir-
radiance; the molecular atmospheric attenuation from various gases
and water vapor absorption as well as aerosol extinction; and the
surface reflectance of the imaged object. The only component of the
incident beam on the sensor that is the property of the imaged object

is the surface reflectance. Although it is possible to obtain some
information on the imaged surfaces directly from the unedited in-
cident beam spectra, atmospheric effects can significantly influence
the quality of extracted information [16, 17]. Hence, disentangling
the atmospheric attenuation from the wavelength dependence of
the reflectivity, and assessing the associated uncertainties due to
covariance between the estimated atmospheric attenuation and sur-
face albedo, is of particular importance for the use of hyperspectral
imaging to study properties of the objects in a given scene.

Atmospheric radiative transfer codes are commonly used in re-
mote sensing applications to separate atmospheric effects from the
surface’s reflectivity [18, 19]. By taking atmospheric parameters
(such as water vapor content, atmospheric gases and aerosol con-
centrations) as inputs, atmospheric transfer codes model the effects
of the propagation of light through the atmosphere prior to reach-
ing the sensor. However, due to the challenges of obtaining accurate
atmospheric parameters at the precise time the hyperspectral image
is captured, assumptions and standard atmospheres are commonly
utilized which introduce inaccuracies to the produced models [20].
Therefore, inverse modeling methods for estimating atmospheric pa-
rameters and recovering surface reflectivity have become more com-
mon [21, 22], though the various atmospheric parameters as well as
the surface albedo are known to have some level of covariance [23],
motivating inverse modeling studies that explore the complete range
of uncertainties (including those covariances) in both atmospheric
parameters and surface reflectivity.

Markov Chain Monte Carlo (MCMC) sampling [24, 25] is com-
monly used for parameter estimation through inverse modelling.
Given a likelihood function, rather than identifying the best fit pa-
rameters to maximize the likelihood, MCMC samples parameter
space based on the acceptance probabilities of the likelihood func-
tion to generate full posterior parameter distributions. In this work,
we demonstrate the use of MCMC with an atmospheric radiative
transfer model to retrieve the atmospheric components and their
uncertainties together with the range of possible albedo functions
of a building facade in a ground-based, side-facing, hyperspectral
image. We then further demonstrate the use of jointly modeling
atmospheric attenuation and the building’s albedo to retrieve the
reflectance spectrum of nearby vegetation.



Fig. 1. Top: RGB (0.61µm, 0.54µm, and 0.475µm) representation
of the scene imaged by the Urban Observatory’s VNIR hyperspectral
imaging system. Bottom: Grey lines showing the spectra of 25 (5×
5) pixels of a building (left) and vegetation (right), and their mean
spectrum shown in blue and green, respectively.

2. MATERIALS AND METHODS

2.1. Hyperspectral Imaging Data

The hyperspectral imaging (HSI) data used in this work was ob-
tained by the ”Urban Observatory” (UO) facility in New York City
(NYC) [12, 26, 15]. The UO-deployed VNIR instrument [13, 27]
was placed atop a tall ∼120 m (∼400 ft) building in Brooklyn with
a South-facing horizontally aligned pointing. The instrument is a
single slit scanning spectrograph with 1600 vertical pixels sensitive
to 0.4 µm to 1.0 µm in 848 spectral channels (spectral resolution,
FWHM, of 0.72 nm), however, the spectra beyond 0.8 µm were
clipped due to low signal-to-noise ratio at longer wavelengths. A
composite RGB image of the scene used in this work is produced by
mapping the 0.61 µm, 0.54 µm, and 0.475 µm channels to the red,
green, and blue values respectively is shown in Fig. 1.

Two sets of pixels were chosen from the scene for this particular
work, a 5× 5 square of a concrete building surface shown as a blue
square, and an adjacent 5× 5 square of vegetation shown as a green
square in Fig. 1. The range of spectra for both sets of urban materials
- human-built and natural - are also presented in Fig. 1 together with
their respective mean spectra used in this work for the purpose of
atmospheric modelling.

The at-sensor signal of the building and vegetation pixels can be
expressed as

SMλ = Iλ ·Aλ ·RMλ , (1)

where SMλ is the measured intensity of a material M at wavelength
λ, Iλ is the solar irradiance, Aλ is the atmospheric attenuation, and
RMλ is the material’s reflectance. The particular choice of pixels
for the buildings and vegetation in Fig. 1 was to ensure that both
the incident top-of-atmosphere solar irradiance and atmospheric at-
tenuation are as similar as possible for the building and vegetation
patches, leaving reflectance as the only variable that depends on ma-
terial type. The reflectance of a concrete surface in VNIR is domi-
nated by the albedo of concrete since its absorption occurs at wave-
lengths ∼ 10 - 13µm. The albedo of concrete exhibits significant
wavelength dependent variations based on a number of factors, in-

cluding porosity, color, water content, and even surface moisture
[28, 29]. In this work, we approximate the albedo’s wavelength
dependence by a bimodal Gaussian function as seen in eq. 2 that
captures its general shape at ∼ 0.4 - 0.8µm,

RBλ =

2∑
n=1

bie
−(λ−µi)

2/2σ2
i + d. (2)

The reflectance spectrum of vegetation, on the other hand, is far
more complex. It tends to be dependent on a variety of factors in-
cluding plant species, development stage, season, leaf position angle
and optical properties, and nutrient and stress condition among oth-
ers [30]. Therefore, by choosing the concrete building pixels to be
in close proximity to the vegetation, we extract the reflectance curve
of the vegetation and its uncertainty by identifying the atmospheric
attenuation component (Aλ) through modeling the at-sensor signal
of the adjacent concrete building.

2.2. Atmospheric Modeling and MCMC

Several codes exist for modeling atmospheric parameters in remote
sensing, however, the majority are known to be computationally de-
manding [31, 32]. Given that MCMC requires a large sampling pool
to converge, we chose the Simple Model for Atmospheric Radia-
tive Transfer of Sunshine (SMARTS2) [33, 34] for this work due
to its relative computational efficiency and available range of wave-
lengths. Using a single core on an Intel Xeon E7 4830 V4 2.00 GHz
processor, SMARTS2 has a median runtime of ∼0.04 seconds to
generate an atmospheric model given input concentrations. For the
purposes of modeling the building’s at-sensor signal (SBλ ) in eq. (1),
the following SMARTS2 parameters were held constant throughout
the MCMC sampling:

• The extraterrestrial top-of-atmosphere solar irradiance spec-
trum Iλ was set to the synthesized spectrum from Gueymard,
2004 [35];

• The latitude, longitude, and altitude of the hyperspectral cam-
era’s location in Brooklyn, the height of the building on which
it was placed, its tilt angle and surface azimuth, and the day,
month, year, and hour of when the hyperspectral image was
obtained;

• The concentrations of gases whose absorption coefficients are
outside the 0.4 - 0.8µm range of wavelengths of the image
used in this scene (CH2O, CH4, CO, CO2, HNO3, NO, BrO,
ClNO, N2O, N2, NH3) were set to zero;

• The aerosol model was set to the Shettle and Fenn humidity-
dependent urban aerosol model [36].

SMARTS2 produces models that are comparable to those from
rigorous radiative codes [34] with calculation time lower by a fac-
tor of more than 25 [37]. However, by default SMARTS2 was not
built to work with large-scale sampling routines in high-dimensional
parameter space. The SMARTS2 Linux implementation is written
in Fortran77, whereby it reads user-specified atmospheric parame-
ters and albedo reflectance from ascii files and outputs the computed
atmospheric models into separate ascii files. To perform MCMC
sampling in this work, we use the Python implementation of the
affine-invariant MCMC ensemble sampler, emcee [38]. Therefore,
the following modifications to SMARTS2 were required to provide
interoperability with the Python statistical ecosystem, including em-
cee, and the ability to perform quick log-likelihood calculations:

• SMARTS2 Fortran77 code was wrapped using Numpy’s
F2py tool [39], making its subroutines callable from Python;



• All functions of SMARTS2 requiring the reading from files
that are not fully static were converted to input callable argu-
ments in the main subroutine. This includes all input atmo-
spheric parameters, as well as the reflectance spectra;

• All values for gas concentrations, from natural abundance or
pollution, that are either user input, computed, or assumed
default values in SMARTS2, were modified to be passed as
arguments to the main subroutine by the MCMC sampler;

• The main subroutine was modified to output the relevant final
set of calculated wavelengths and spectra to arrays rather than
writing results to files.

Without the above modifications to SMARTS2’s file I/O func-
tionality, a single model sampling step together with file operations
takes on average ∼3.1 seconds. The above modifications reduced
this value to ∼0.02 seconds, and allowed for the use of parallel
computation when sampling the likelihood function. For this sam-
pling, emcee was configured to sample the following variables (~θ):
µi, σi, bi (i = {1, 2}), and d - the parameters for the bimodal
Gaussian function for the albedo of concrete in eq. 2; RH [%] -
relative humidity at site level; H2O [g/cm2] - precipitable water
above the site altitude; OAb3 and Op3 [atm - cm] - ozone total-column
abundance above site level and tropospheric ozone due to pollution,
respectively; HNO2, NO2, NO3, SO2 [atm - cm] - total-column
abundances including tropospheric concentrations of gases with ab-
sorption coefficients in the 0.4 - 0.8µm wavelength range; and O2

[atm - cm] - total column abundance of oxygen. Uniform priors
were used to constrain all parameters into physically meaningful val-
ues. For the probability calculation, we use a Gaussian likelihood
function,

ln p(y|λ, ~θ, ε) = −1

2

∑
λ

[
(yλ − Sλ(~θ)B)2

ε2λ
+ ln (2πε2λ)

]
, (3)

where y is the observed mean at-sensor building spectrum shown in
Fig. 1 and ε represents an amount by which the noise is underesti-
mated.

3. RESULTS

The posterior distributions of the model parameters for both molec-
ular atmospheric concentrations as well as the building reflectance
are shown in Fig. 2. In particular, Fig. 2(a) shows the range and co-
variances of atmospheric parameters of Aλ (eq. 1), while Fig. 2(b)
shows the same for the albedo reflectance component of the build-
ing spectrum RBλ . Note, although the figure shows the atmospheric
and building parameters as separate corner plots, the likelihood func-
tion was sampled across all parameters simultaneously, and we show
only these subsections of the full corner plot for space considera-
tions. The contours in the plots represent 1σ, 2σ, and 3σ uncertain-
ties for each parameter, and contours that appear cutoff by the edge
of their plot axes are the result of priors limiting the parameters to
be ≥ 0 in order to be physically meaningful. The median and 3σ
uncertainty for each parameter is shown in Table 1.

Using 3σ samples from this posterior to generate models forAλ
and RBλ , we show each component of eq. 1 as well as the range of
model outputs for the observed signal in Fig. 3. The figure demon-
strates the range of reflectance spectra of the building’s surface given
noise in the detector and covariance between albedo and molecular
atmospheric concentrations.

By constraining the albedo of the building surface (RBλ ), we are
able to isolate the range of potential atmospheric attenuation spectra.

Fig. 2. MCMC results from modelling the at-sensor signal of the
building surface with SMARTS2. (a) shows the corner plot of the at-
mospheric parameters, and (b) shows the corner plot for the albedo
parameters in the bimodal Gaussian. Table 1 shows the median
value and 3σ uncertainty for all parameters. The full version of
this corner plot can be found at: https://cuspuo.org/VNIR_
covariance/MCMC_corner.png

Table 1. MCMC median and 3σ uncertainty (including the full
parameter covariance derived from the posteriors in Fig. 2) of the
albedo and atmospheric parameters obtained from modelling the at-
sensor signal of the building surface with SMARTS2. Precipitable
water (H2O) is in units of g/cm2, all other gas concentrations are in
atm - cm.

Parameter −3σ Median +3σ
µ1 0.572 0.579 0.583
b1 0.0293 0.0462 0.0807
σ1 0.0265 0.0331 0.039
µ2 0.746 0.754 0.763
b2 0.0866 0.109 0.123
σ2 0.0496 0.0618 0.0743
d 0.191 0.277 0.376
RH 1.95 37.7 76.2
H2O 1.16 1.43 1.72
HNO2 0.0885 0.772 1.87
NO2 0.000223 0.00273 0.00676
NO3 1.11e-06 2.48e-05 8.36e-05
OAb3 0.00666 0.169 0.713
Op3 0.00665 0.174 0.736
SO2 0.0202 0.265 0.649
O2 62300 70500 79400
τ5 1.06 1.63 2.13
ε 0.0044 0.00466 0.00496



Fig. 3. The components of eq. 1. Top left: Range of at-sensor sig-
nal models produced by SMARTS2 using MCMC sampling (blue)
against the mean at-sensor signal of the building pixels (black) SBλ .
Top Right: Extraterrestrial top-of-atmosphere solar irradiance spec-
trum Iλ. Bottom left: Range of atmospheric attenuation models pro-
duced using the parameters in Fig. 2 Aλ. Bottom right: Range of
uncertainties in albedo curves, (blue)RBλ , and two of the SMARTS2
template concrete albedo curves (black dashed) for reference.

Fig. 4. Range of uncertainty in the atmospherically corrected re-
flectance spectrum of vegetation (RVλ ), obtained by propagating un-
certainties from dividing the mean at-sensor vegetation spectrum
(SVλ ) by the solar irradiance spectrum (Iλ) and atmospheric atten-
uation (Aλ).

We can then use these (together with the solar irradiance spectrum)
to determine the range of reflectance spectra for nearby materials
that are affected by the same atmospheric attenuation. For example,
we demonstrate this with our spectrum for vegetation in Fig. 4 and
note that the upshot of our methodology is that uncertainties and
covariances in atmospheric modeling can be propagated into further
studies such as vegetative health monitoring.

4. CONCLUSIONS

In this work we have integrated several open source software pack-
ages to combine hyperspectral analysis software with statistical sam-
pling. We have developed a framework for estimating the effects of
covariance between the absorption of various gas species, scattering,
and aerosol extinction in the atmosphere on atmospheric models and
the remote measurement of surface reflectances. In particular, we
have derived the full posterior distribution for an atmospheric at-
tenuation model at VNIR wavelengths that takes into account the
covariances between all atmospheric species as well as parameters
of the surface albedo. We have used this framework to demonstrate
our ability to propagate uncertainties into corresponding ranges of
uncertainty in the reflectance spectra for both human-built and natu-
ral surfaces in urban areas. Using these derived uncertainties within
context of domain-specific remote sensing studies such as the remote

detection and monitoring of vegetation health, structural integrity in
built structures, and gas plume detection and speciation will be the
subjects of future work.
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