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ABSTRACT

In this paper, we evaluate the possibility of using opti-
cal remote sensing techniques to survey remote glacier ar-
eas, where conventional surveying techniques are difficult to
carry out. The extent of different spectral classes on the Tyn-
dall glacier area in the Southern Patagonian icefield, Chile,
is evaluated through classification with respect to five differ-
ent snow and ice types on the surface of the glacier. Differ-
ent classification approaches are tested for their eligibility to
identify these snow and ice types. As no labeled data is avail-
able for the investigated remote area, a novel method is tested
to obtain labeled Sentinel-2 compliant data from theoretical
spectral reflectance curves. The achieved classification results
show that all examined classification approaches are suitable
for detecting different spectral snow and ice classes on the
glacier surface.

Index Terms— Remote Sensing, Glacier Monitoring,
Snow Mapping, Classification, Multi-/Hyperspectral Data

1. INTRODUCTION

Remote sensing surveying techniques are nowadays widely
used for various applications. One of the primary purposes
is to map areas with different land cover types. These tech-
niques allow the overview of a larger area than conventional,
terrestrial survey methods in a shorter time and with less ef-
fort. A remote area is studied in this work, which would cost
an inefficiently high effort to survey with terrestrial methods.

The Campo de Hielo Patagénico Sur (CHPS) is an icefield
in Southern Patagonia between Chile and Argentina. It is still
poorly known as research in this remote area, in general, is
challenging. Previous studies focus on the development of
the glacier extent and mass balance [1, 2]. Apart from only
the extent, the knowledge of the snow and ice cover types of
the glaciers is significant, as the variability of seasonal snow
cover is an essential parameter in the climate system.

This study’s main objective is to carry out an automatic
classification concerning different snow and ice types on a
glacier surface using Sentinel-2 data to benefit from the high
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Fig. 1: Overview of the applied glacier monitoring approach.

resolution, as shown in Fig. 1. As no reference data is avail-
able for different snow and ice cover types in the investi-
gated area, suitable reference data is obtained from theoret-
ical knowledge [3]. More specifically, labeled Sentinel-2-
like data are simulated by reducing from densely sampled
spectral reflectance curves representing different snow and ice
cover types to spectral reflectance curves representing infor-
mation on Sentinel-2 bands only. The latter corresponds to the
transfer from hyperspectral data to Sentinel-2-like data [4, 5,
6]. On this basis, four classification approaches are investi-
gated: two unsupervised approaches, the k-means clustering
and a rule-based classification via snow and ice indices, and
two supervised approaches, the Linear Discriminant Analysis
(LDA) and the Random Forest [7] (RF) classifiers.

2. RELATED WORK

Multitemporal analysis of a glacier concerning different snow
and ice types is relevant to detect changes in the glacier’s sur-
face composition. Different classes influence the glacier’s be-
havior (melting or refreezing on the glacier) in different ways.

The knowledge of the snow-covered area facilitates a
diversity of applications, for example, water resource man-
agement. While snow cover plays an essential role in general,
snow cover on a glacier is particularly of interest: Deep snow
cover on the glacier keeps glacier temperature colder and
therefore prevents more melting and water run-off. In [8],
different snow seasons with different average snow depths
are evaluated. A deeper snow depth causes a delay in the



snow cover time to reach isothermal conditions, which allows
the snow cover on the glacier to persist longer. The separa-
tion into the classes of new and aged snow allows statements
about the snow wetness, one of the main physical properties
of snow. Snow wetness accordingly allows statements about
the location of zones of accumulation areas on the glacier.

Besides the snow cover, different ice types might also
strongly influence the behavior of a glacier. On the one hand,
a classification concerning the class dirty glacier ice allows
reasoning about the extent of debris cover on the glacier sur-
face. The influence of debris cover on the processes on and
within the glacier is described in [9]. There, achieved results
indicate that ice with debris cover reveals lower melting rates
than clean ice. Even a small debris cover thickness of only
1cm to 2 cm reduces ice melting. Moreover, the study sug-
gests that a thinning glacier naturally becomes debris-covered
over the ablation area as more debris from the sides of the
glacier spreads on it. The debris cover on the ice naturally
reduces the rate of ice loss. On the other hand, separation of
an extra class for refreezing ice is relevant, as the refreezing
of meltwater may prevent immediate run-off of meltwater and
therefore influence glacier ablation [10].

In related work, the definition of snow and ice types varies
a lot [11], and there is no general definition. A large-scale
analysis of glaciers for snow/ice cover classes like the ones
mentioned before may be achieved by using multispectral
satellite imagery, as there is a large difference in snow and ice
reflectance in the visible, near-infrared (NIR) and shortwave
infrared (SWIR) regions of the spectrum for these classes. For
instance, in the visible part of the spectrum, the reflectance is
very high for freshly fallen pure snow, while it decreases with
the age of the snow and given impurities [3]. For each class,
a relatively unique shape of the spectral signature is given
with characteristic spectral differences across the spectrum.
This shape represents the basis for most multispectral glacier
mapping applications [12] and can be treated in analogy to
semantic segmentation of remote sensing data in general
[13, 14], given representative and sufficient training data.

3. METHODOLOGY

After focusing on the classes taken into consideration for this
work (Section 3.1), we explain how reference data are created
for the classification task (Section 3.2). Subsequently, we de-
scribe the performed data preprocessing (Section 3.3) and the
applied classification approaches (Section 3.4).

3.1. Class Definition

Several physical properties define a type of snow or ice. In
this work, only the characteristics that change the spectral sig-
nature of the actual snow/ice type can be detected due to the
use of multispectral satellite imagery. Hence, only snow and
ice types that can be separated accordingly are considered:

e Glacier ice: ice, which forms where the accumulation
of snow and ice exceeds ablation. Different geologi-
cal features need to be met to allow the formation of a
glacier. As snow falls and is compressed and contained
air is squeezed, the snow slowly turns into glacier ice.
Compared to refreezing ice, glacier ice exists in the
lower parts of the glacier and is older.

® Refreezing ice: superimposed ice and blue ice, which
occurs when snow falls on an already existing glacier
and is compressed and becomes part of the glacier in
newer years of the glacier’s existence.

e Dirty ice: dirty glacier ice is basically glacier ice that
is mixed with impurities, mostly debris. The term de-
bris here is taken to include all rock materials lying on
the glacier or adjacent to the glacier, where it encoun-
ters non-glacier material on its borders in the adjoining
valley (mostly bare rock/soil). Even small impurities of
soil can cause a different spectral reflectance of the ice
and, therefore, a classification into the class of dirty ice.

e Aged snow: aged snow is characterized by being melted
and refrozen due to changes in incident solar radiation
and temperature. Therefore, it contains a higher wa-
ter content than fresh snow and more impurities due to
a long time being on the ground. It has a lower re-
flectance value.

e Fresh snow: newly fallen snow shows contrary proper-
ties to aged snow. It has lower water content and con-
tains fewer impurities, leading to a higher reflectance.

3.2. Generation of Reference Data

Suitable reference data are obtained from theoretical knowl-
edge in the form of given, densely sampled spectral signatures
for either class according to [3], as shown in Fig. 2. As for the
classification of full scenes of the glaciers, the class water is
added, labeled reference data are also necessary for this class
and generated accordingly from a given spectral reflectance
curve. On that data basis, interpolation is applied to obtain
the spectral reflectance curves (SRCs) with values for steps
of 1 nm in wavelength. Subsequently, the spectral response
functions (SRFs) of the Sentinel-2 multispectral instrument
and the derived SRCs are used to calculate the weighted mean
of the reflectance values per class per band.

As, for the given classes, the created dataset contains only
five samples, which does not reflect the whole variance of
spectral values that a spectral class might comprise, the cre-
ation of a bigger dataset is necessary. This creation is ob-
tained by applying the Nearest-Neighbour (NN) algorithm.
To obtain a non-committed result in the evaluation of classi-
fication results, training data (Training Areas = TAs) and test
data (Test Areas = TEs) are created: independent Regions Of
Interest (ROIs) are chosen on the glacier area, manually se-
lected based on the data created through the NN algorithm.
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Fig. 2: Spectral signatures for snow and ice classes, cf. [3].

3.3. Preprocessing

Some preprocessing steps are required to work with the avail-
able satellite data. These steps address an atmospheric cor-
rection via the Sen2Cor software, where the correction is per-
formed according to [15]. Furthermore, we apply an image
enhancement for each band of the multispectral imagery by
mapping values that lie below or above the boundary 1 %-
percentile to the percentile’s value and subsequently scaling
the resulting values for each band to a range of 0 % to 100 %.
Finally, ROIs are selected for the following analyses. As only
the glacier itself is considered in this study, while the area
surrounding the glacier is not of particular interest, a corre-
sponding mask as well as a shadow mask are created.

3.4. Classification

We investigate four classification approaches. These com-
prise two unsupervised approaches represented by k-means
clustering and a rule-based classification, and two supervised
approaches represented by LDA and RF classifiers.

For the k-means clustering, k is selected as the number of
centroids needed for the given dataset. After clustering, the
obtained clusters are assigned to the pre-defined classes based
on their Euclidean distance to respective reference spectra to
compare with the results of other methods.

For the rule-based classification, we follow [16], where
different spectral indices are used to separate between dif-
ferent snow cover classes. These indices comprise the Nor-
malized Difference Snow Index (NDSI), the Normalized
Difference Glacier Index (NDGI), and the Normalized Dif-
ference Snow Ice Index (NDSII). After calculating these
indices, thresholds are applied to separate the data for classes

defined in [16]. In this context, suitable thresholds need to be
found and — as the thresholds may vary with different sensors
and seasons and are even scene-dependent — they are chosen
experimentally. Furthermore, we adapt the class definitions
for our pre-defined classes to compare the results with those
achieved with other considered classification approaches.

For the LDA classifier, Gaussian distribution parameters
are estimated for each class during the training, assuming that
each of the classes is characterized by a mean vector p; and
the same covariance matrix . A new sample can then be
classified by maximizing the likelihood of that sample.

For the RF classifier [7], the training consists of gener-
ating an ensemble of randomly different decision trees via
bootstrap aggregating (‘“bagging”). A pre-defined number of
weak learners represented by decision trees are trained in-
dependently from each other on subsets of the training data,
which are randomly drawn with replacement. For a new sam-
ple to be classified, each decision tree casts a vote for one of
the defined classes and considering the majority vote across
the individual votes allows for a robust class prediction.

4. EXPERIMENTAL RESULTS AND DISCUSSION

After focusing on the study area (Section 4.1), we proceed
with analyzing the quality of the reference data (Section 4.2)
and the achieved classification results (Section 4.3).

4.1. Study Area

The extent of the whole Patagonian icefield (Campo de Hielo
Patagénico Sur; CHPS), which stretches for about 350 km
[17], is too large to undertake a study of precise snow/ice
type classification. Hence, in this work, only a subset of the
Torres del Paine National Park is considered, as it presents
a great physical, climatic and biological diversity. This park
comprises the Grey, Tyndall and Dickson glaciers, which are
some of the main 20 glaciers in the CHPS. Representatively
for these three glaciers that are influenced by the same cli-
matic and weather changes, the snow and ice cover devel-
opment of the Tyndall glacier is studied in the scope of this
work. This glacier is one of the largest glaciers in the South-
ern Patagonian icefield, with an approximate length of 32 km.

4.2. Quality Assessment for the Derived Reference Data

The quality of the generated reference data is evaluated per
class by comparing obtained reflectance values with theoreti-
cal spectral reflectance curves. For each band, the mean val-
ues correspond well with the theoretical curves (Fig. 2) for
most of the classes, and the standard deviations are quite sim-
ilar for all bands in all classes, with about 5 % to 10 %. Some
outliers occur for Band 1 for the class of dirty glacier ice, and
the main mixing of the values occurs in the Bands 1-3 for the
classes aged snow, glacier ice, and refreezing ice.



Table 1: Comparison of the results achieved with the ap-
plied classification approaches (Clust: Clustering with £ = §;
RBC: Rule-based classification) with values in %.

Metric Clust RBC LDA RF

OA 84.70  90.98 97.26 97.49
k-index 79.73 84.00 96.38  96.68
mean F-score 83.37 82.40 96.39  96.70
Recall mean 82.05 79.09 96.35 96.65
Precision mean  84.73 86.00 96.43 96.75
Recall min 53.40 32.18 89.70 89.77
Recall max 100.00 99.47 100.00 100.00
Precision min 57.97 74.33 92.12 93.01
Precision max 100.00 99.18 100.00 100.00

However, this approach has some drawbacks: First of
all, the generated reflectance curves representing theoretical
knowledge of reflectance properties for individual classes are
not specifically chosen for the considered study area. Re-
flectance values for certain snow and ice classes might vary
depending on higher impurity contents in snow/ice or for
other reasons. Furthermore, the read-off from the reflectance
curves to data points might not be that accurate. Such slight
deviations from the underlying theoretical reflectance curves
might, however, be an advantage, as it may improve the
generalization of the used spectral reflectance curves.

4.3. Classification Results

We apply the k-means clustering for different values of k. A
subsequently performed in-depth analysis reveals that a selec-
tion of k=8 delivers good results for the assignment of cluster
centers to the considered snow/ice classes, with an overall ac-
curacy (OA) of 84.70% as displayed in Table 1.

For the rule-based classification described in Section 3.4,
suitable thresholds need to be found for an appropriate sep-
aration with respect to the different classes. This separation
is achieved by considering histograms of the indices and suc-
cessively selecting thresholds that are useful for separating
classes across several steps. The assumption of comparability
of the thus defined classes to the pre-defined classes is nec-
essary. It can be made, as the obtained results from the rule-
based method show similar structures of snow/ice classes as
the reference data. The NN algorithm is used to finally as-
sign the classes obtained from the rule-based classification to
those classes given with the generated reference data. The
achieved classification results reveal a high quality indicated
by an OA of 90.98%, while the x-index and the mean F-
score across classes are given with 84.00% and 82.40%, re-
spectively. However, the high OA should be considered with
caution. In this case, the results are biased, as a separation be-
tween fresh snow and aged snow is not taken into account due
to the original class definition based on the spectral indices.

Tyndall Glacier

Fresh Snow B Glacier Ice
Aged Snow Refreezing Ice
I Dirty Glacier Ice I Water

Fig. 3: Visualization of the study area in Chile and the classi-
fication results achieved with the applied RF approach.

These two classes are considered and evaluated as one. The
confusion between those classes is not evident in the OA but
indicated with a low minimum recall of 32.18%.

The results obtained by the LDA classifier have a rather
high accuracy, with all considered evaluation metrics being
in the range of about 90-100%. Class-wise evaluation reveals
that the class refreezing ice has the lowest recall and precision,
which reveals that it is a little more difficult for the algorithm
to classify this class compared to the others.

For the RF classifier, the internal parameters are selected
based on a grid search, showing the best results for 100 de-
cision trees, a maximum tree depth of 20, and a minimum
number of 5 data points allowed at child nodes for a further
split. The achieved results reveal the highest accuracy among
the tested methods, with an OA of 97.49%. Classification re-
sults for this approach are displayed in Fig. 3 for the date of
08/05/2019 together with the glacier outline of 04/02/2017.



5. CONCLUSIONS

In this work, we focused on the classification of the surface
of a glacier in the region of the Torres del Paine National
Park in Southern Chile with respect to different snow and ice
classes. While the use of multispectral data generally allows
for such large-scale analyses, we faced a major challenge be-
cause no reference data was available, which could be used
for training a supervised classification approach towards sep-
arating the pre-defined classes. We addressed this challenge
by generating suitable reference data from theoretical knowl-
edge in the form of given, densely sampled spectral signa-
tures for either class. This can be considered as interpretation
of theoretical spectral signatures in terms of hyperspectral
data that are subsequently transformed into multispectral data.
From the obtained primary data, further labeled reference data
points are aggregated by applying the NN algorithm to create
a larger dataset. On this basis, the performance of four differ-
ent classification approaches was evaluated: (a) k-means clus-
tering, (b) rule-based classification via snow and ice indices,
(c) LDA classifier, and (d) RF classifier. The achieved results
for classification with respect to snow and ice types on the
Tyndall glacier are relatively good for all tested classification
approaches, with the RF representing the best-performing ap-
proach. A major limitation of the presented work is common
with other optical remote sensing techniques, as multispec-
tral Sentinel-2 data is only appropriate for cloud-free scenes.
Nevertheless, this work serves as a good basis for future in-
vestigations, which will focus on a multitemporal analysis ad-
dressing the development of the glacier over time.
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