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ABSTRACT

Standard Atmospheric Correction algorithms that predict
water-leaving radiance, while working well for the open-
ocean using multispectral data, can be inaccurate or com-
putationally demanding for coastal and optically-complex
waters, where the phytoplankton signal might be masked or
modified by the presence of other substances. Here, differ-
ent Machine Learning models are presented, trained, and
evaluated using simulated hyperspectral ocean color data of
top-of-the-atmosphere radiance from coastal waters to pre-
dict water-leaving radiance and other ocean color variables
directly, such as chlorophyll concentration. High accuracy of
up to 99% for some of the variables is achieved when trained
and evaluated on simulated data.

Index Terms— Atmospheric Correction, Hyperspectral
Imaging, Remote Sensing, Ocean Color, Machine Learning

1. INTRODUCTION

An understanding of the biogeochemistry, ecology, and haz-
ards of the oceans with a changing climate is critical to
sustaining Earth as a habitable planet [1]. Satellite remote
sensing of the ocean’s spectral albedo is an effective tool
to characterize and monitor the ocean environment on a
global scale. Ocean Color can be used to monitor chlorophyll
concentration (CHL), a common biomarker for the state of
the marine ecosystems, providing aquaculture industry and
government with information regarding water quality, bio-
geochemical cycles, and fisheries management. This requires
a knowledge of the biotic signatures of the different ecosys-
tems as well as the separation of those signals created by the
atmosphere.

Here, radiative transfer (RT) models will be utilized to char-
acterize and separate the atmospheric signals, and explore
Machine Learning (ML) solutions to identify coastal ecosys-
tems from their spectral albedo, discriminating against the

atmospheric transmission scenarios typically present for Hy-
perspectral (HS) data [2} 3]

Originally, the analysis was performed using ML models for
Neural Network (NN), Stochastic Gradient Descent Regres-
sion (SGDR), Partial Least Squares Regression (PLSR), and
Support Vector Regression (SVR). All models were used to
train Atmospheric Correction (AC) models on HS data, but
only the results from NN and PLSR are presented in this
paper, as they were the most promising. The full analysis
can be found in [4]. To generalize well with ML, a lot of
data representing various environmental cases would have
to be obtained. Using synthetic data sets was chosen as our
approach due to the difficulty of finding large amounts of HS
data with corresponding metadata, such as sun-target-sensor
angles alongside in — situ measurements of light fields for
validation. Similar approaches using simulated data of mul-
tispectral radiance has been used to verify AC algorithms in
[3,15) 6], and will form a basis for comparison.

In this paper, the RT model AccuRT [7] is utilized to simu-
late different HS radiance/irradiance data representative of a
wide range of atmospheric and coastal oceanic environments,
both strong aerosol containment and Case 2 waters. The
ML models were trained on the simulated data, to predict re-
mote sensing reflectance (R,.;(\)) from different top-of-the-
atmosphere (TOA) radiances. Also, water Inherent Optical
Properties (IOP) retrieval algorithms based on ML were pro-
duced, aimed to predict the main IOPs of the water. The ML
models will predict CHL, mineral concentration (MIN) and
the absorption coefficient at 443 nm for coloured dissolved
organic matter (acgom (443)) from R,.()), defined in Eq. (T).
The trained ML models is then validated against each other
concerning the accuracy, computational complexity, and in-
terpretation capability, to study which could be suitable for
on-board processing. Giving an indication as to how well the
approach found in [S] for multispectral data works for HS
data, specifically for optically complex waters.



2. PROBLEM FORMULATION

As most of the satellite measured TOA radiance over waters is
due to atmospheric contributions, retrieving useful properties
from the water-leaving radiance could only be done well if the
AC algorithms are accurate. Only a relatively small portion of
the incoming sunlight is backscattered from below the ocean
surface in comparison with the sunlight backscattered from
the atmosphere and specular reflection from the surface [8]].

With L,, (07, \) as water leaving radiance just above the
sea surface and F as the extraterrestrial solar irradiance, the
R,s(\) can be expressed as:

Rrs()\) = Lw(0+7 /\) /Fo COS (90) to()\, 90) (1)

With the total measured TOA radiance at a given wave-
length A, L;(\), for ocean-atmosphere systems can be ex-
pressed as the partitioned linear equation [9]], see Fig. [T]

Lt()‘) = Lr(/\) + La()‘) + t()‘)Lwc(/\)+

where L,.()) is the radiance due to Rayleigh scattering by air
molecules, L, () is the aerosol scattering, Li,.() is the radi-
ance contribution from whitecap on the sea surface, Ly, (\)
is the specular reflection of direct sunlight off the sea surface,
Liy(N) is the radiance contribution from surface-reflected
background atmospheric radiance and L., () is water-leaving
radiance due to photons that penetrate the sea surface and are
backscattered. Diffuse and direct transmittances are given as
t(A) and T'(\), respectively.

Fig. 1: Tllustration of different contributions to the sensor-
measured radiance.

Standard AC algorithms, e.g FLAASH, ATREM and POLDER
[2, 3L 15, are based on a computationally demanding RT
model, like MODTRAN, or a set of pre-calculated spectral
Rayleigh scattering values, stored in Look Up Tables (LUT),
to compute L,.(\). RT models can give an uncertainty lower
than 0.5% [3] when predicting L,.(\), which is also the
major contribution to L;(\). The algorithms could retrieve

values from the LUTs matching the geometry and parameters
from a scene, and use interpolation for values in between.
Many AC algorithms for ocean color are based on the as-
sumption that electromagnetic radiation in the NIR region
back-propagated out of the water can be assumed to be zero,
i.e. black ocean assumption. This assumption can be used
to estimate aerosol contributions. While this approach works
well for open oceans, it does not fit for coastal areas where
the black ocean assumption tends to fail, and the aerosols
can be more optically complex. One method to address this
problem was studied by [S]], where the combined aerosol and
Rayleigh-corrected TOA radiances for multispectral data was
used together as input to a NN, where R,.;(\) was predicted.
A similar approach is presented here for HS data.

3. ACCURT MODEL

The coupled atmosphere-ocean RT Model AccuRT was used
to simulate the interaction of solar radiation with particles and
molecules in the atmosphere and ocean. AccuRT is a well-
tested, user-friendly, and accurate radiative transfer model
also capable of including effects from Case 2 waters, and
was used to simulate different spectral radiance/irradiance
data representative for strong aerosol containment and Case
2 waters [7]. AccuRT was used to generate synthetic data
consisting of HS TOA radiance and corresponding R,.()\)
for a large variation of aerosol and ocean body properties for
400-800 nm wavelengths with 5 nm spectral sampling.

3.1. Atmosphere and Aerosol

AccuRT uses a stratified vertical structure defined by the in-
tensive properties of an atmosphere in hydrostatic balance. A
14-layer atmosphere covering the first 100 km was used with
the predefined U.S. Standard atmospheric profile [} [7]. The
aerosols were added to the boundary level with Aerosol Opti-
cal Depths (AOD) at 869 nm chosen between 0.0001 and 0.4
was used. In AccuRT, it was not possible to specify AOD at
any given wavelength directly, but the variation in AOD(869)
could be included by varying the values of volume fraction of
aerosols (f,), the fraction of fine and coarse aerosols (f), and
relative humidity (RH). Value ranges of these aerosol specific
parameters could be chosen to get AOD(869) values between
0.0001 and 0.4, shown in Fig. [2| With 6y, 0, A¢ as solar and
sensor zenith, and relative sensor azimuth angle respectively,
the ranges of simulated values are shown in Tab.

3.2. Water I0OPs

To simulate a representative synthetic dataset for the ML
algorithms, water IOPs were extracted from in-situ field
measurements. The water IOPs extracted, and needed for
AccuRT data generation, were aqom (443), CHL and MIN.



Data were extracted from the NASA bio-Optical Marine Al-
gorithm Dataset (NOMAD) dataset and Coast Color Round
Robin (CCRR) datasets [[10]]. The distribution of CHL, MIN,
and a.qom (443) are shown in Fig. [2| The goal was to extract
water IOPs representative for both Case 1 and Case 2 waters.
When generating data with AccuRT, the bio-optical model
CCRR was used [7]].
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Fig. 2: Distribution of CHL, mineral concentration (MIN) and
Gedom (443) extracted from different field datasets, together
with the distribution of AOD(869) generated with AccuRT.

3.3. Data Generation with AccuRT

The main challenge for AC over coastal waters is that both
the water and the aerosols are more optically complex, than
for open oceans. This study will address this problem as done
in [5] by looking at the simulated Rayleigh-corrected TOA
radiance (L,.q()\)), defined as:

Lyac(A) = La(A) + (X)L (N) 3)

L;qc()) is therefore the TOA radiance corrected for atmo-
spheric gas absorption, Rayleigh, glint and whitecaps. These
effects were removed as they often are corrected for in satel-
lite image processing [5]. The trained AC models would then
predict R,.s(\) from L.q.(N),

For training and tuning/regularization 85% of the total sim-
ulated data was randomly selected, using the regularization
approach described in Sec. [4.2]and[4.3] The remaining 15%
was used to test the models, with the results shown in Sec. 3

4. DATA PREPARATION & MACHINE LEARNING

4.1. Data Pre-processing

The spectral radiance input was divided by the cosine of the
solar zenith angle, which is a term that can be found in Eq.
(I, to get reflectance.

Table 1: Different input parameters used for the AccuRT sim-
ulations, their ranges and how the parameters were selected.

Parameter Value range  Unit Selection
0o 0-65 [°] Uniform

0 0-70 [°] Uniform
A¢ 0-180 [°] Uniform
RH 30-95 [%] Uniform

fs 0-1 unitless Uniform

fo le-12 - le-10  unitless Uniform
CHL 0.006 - 98 [mg/m3]  Distribution
MIN 0.002 - 99 [g/m3] Distribution
Gedom (443) 0.0004 - 5 [m~1] Distribution

The Savitzky-Golay filter (Savgol) can be applied to a set
of discrete data points to smooth the spectral data without dis-
torting the signal tendency [[11]. Different types of derivatives
can be applied to the spectral Savgol filtered data. This filter
has long been used for spectroscopy to smooth and differen-
tiate absorption spectralll2]. As the filter improved perfor-
mance it was used as a pre-processing step.

Finally, the input data was normalized as given in Eq. (@),
where X is the normalized data, X is the original input data,
X is the mean and o x is the standard deviation.

X-X

ox

)A(:

“)

4.2. Sequential Neural Networks for Regression

It has been demonstrated that NNs with one or more hid-
den layers can predict non-linear relationships that could be
suitable for deriving remote sensing reflectance from various
TOA radiances [3! 5]. The NN presented here is a feed-
forward NN, also known as the multilayer perceptron. The
Python Deep Learning library Keras, with TensorFlow as a
backend, was used to build the NN models, which were sim-
ple sequential models[13]]. Several variations were tested, and
the NN presented here used the “adam” optimizer with 2 hid-
den layers, 700 neurons in the first hidden layer, ReLU as
activation function, and MSE as a cross-validation metric for
tuning/regularization during training.

4.3. Partial Least-Squares Regression

PLSR reduce collinearity and noise within a given dataset
by iteratively relating data matrices using linear multivari-
ate models. It is a two-step algorithm that first finds uncor-
related components in the variables of a given data set and
then performs the least squares regression on these compo-
nents. A more in-depth description of the algorithm can be
found in [14]]. Several variations were tested, with 10-fold-
cross-validation for tuning/regularization, and with variable
selection[13]].



For IOP prediction, 81 bands and 22 components gave the
best results, as shown in Fig. [3| Varying the hyperparameters
did not yield very different results.

5. RESULTS

The results of AC and IOP prediction using the different
ML models were compared using the Pearson correlation
coefficient (R), the average percentage difference (APD),
and the normalized root mean squared difference (NRMSD),
described in Eq. (B), (6) and (7)), respectively.

1L /Yy, —V\ [V, -V
R:NZ< oy )( 017 ) (5)

N
1 Y, -Y;
APD [%] = — > | =—=—| x 100 (6)
=1 i
>N (Vi-Yh)?
NRMSD = .~ @)
maxr ~ szn

where N is the number of samples, Y; is the i-th predicted
radiance value at a given wavelength, Y; is the corresponding
ground truth radiance value, oy and oy are the standard de-

viation of Y and )7, Y and Y are the mean values of Y and )A/,
and Y4, and Y,,,;,, are the maximum and minimum value of
Y, respectively.

The ML models would give 81 predicted outputs from the
wavelength bands between 400 and 800 nm. Metric val-
ues for each predicted wavelength band were calculated and
would therefore yield 81 values for each metric (R3y,, R3s.
... » R200). The optimal results of each ML model were also

based on the mean of the 81 metric values, given as ?, APD
and NRMSD.

5.1. Atmospheric Correction Results

In this study, the two ML models were used to predict L., ()
from Rayleigh and absorption corrected radiance (L,q.())),
0, 0y and A¢. Before finding the optimal results, a hyper-
parameter optimization study was done by training the ML
models on a range of different Savgol filters and hyperparam-
eters. The ML models giving the best results based on both
the Pearson coefficient and NRMSD are presented in Tab. [2]
The models are compared further by the aforementioned met-
rics and execution times.

AC of multispectral L,,. with MLNN done in [S]] pro-
duced R? > 0.993 for all 7 bands in VIS (412, 443, 488, 531,
547, 667 and 678 nm) and APD = 3.1 %. The NN trained on
HS data showed comparable results, see Tab. with R? >

0.992 for all 81 bands and APD = 4.4 %, and ? calculated

Table 2: Optimal results when predicting R,s(\) from
Lyac(N), 0, 6p and A¢ using NN and PLSR with respect to
time complexity. Computational time to fit the model (Tg,),
computational time to predict the output (Tpeq) and the num-
ber of training data (Ny,,;,) are given.

Metrics R?>  APD [%] NRMSE
NN 0.999 4.42 0.045
PLSR  0.974 34.1 0.197
Time  Thc[s]  Tprea [N Nirain
NN 675 1.3e-3 91702
PLSR 166 1.0e-4 91702

from the NN was at 0.999, which was higher than 0.996 re-
ported by [3]]. These results imply that both models are able to
predict the spectral relationship between L,.,. and R, with
similar or better accuracy.

5.2. IOP Prediction Results

Several ocean color algorithms [3]] can predict IOPs from
R,s(\) based on empirical relationships derived from in-situ
measurements, like the non-linear OCx algorithm. Here, NN
and PLSR models were trained to predict CHL, acqom (443)
and MIN from R,s()) from the HS R,s()) data. Different
Savgol filters were applied to the input data for each NN
model. The best results using NN to predict IOPs are shown
in Tab.[3

Table 3: Predicted chlorophyll concentration (CHL),
Gedom (443), mineral concentration (MIN) from R,.;(\) with
NN and PLSR validated with R?, APD, and NRMSD.

CHL Gedom (443) MIN
Metrics NN PLSR NN PLSR NN PLSR
R? 0.999 0987 0.996 0961 0.998 0.994
APD [%] 884 127.1 168 845 424 650
NRMSE  0.0353 0271  0.0933 0.275 0.108 0.178

6. DISCUSSION AND CONCLUSION

AccuRT was used to simulate HS data representative for chal-
lenging coastal waters which could be used to train ML mod-
els. When predicting R, s from TOA radiance corrected for
Rayleigh and absorption (L,,.), all ML models resulted in
R? > 0.968, indicating that they were able to predict the
spectral relationship between L,... and R,.;. The best results
were obtained with the NN algorithm (R2=0.999), especially
compared to the linear model PLSR (R?=0.974). However,
the PLSR provided interpretable coefficients, see Fig. 3] and
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Fig. 3: Normalized absolute values of PLS coefficients as a
function of wavelength bands for predicting CHL together
with scatterplots of the predicted and simulated CHL. Num-
ber of features (Ngeat) and number of components (Ncomp)
are highlighted in the left plot. The grey dashed curve repre-
sent one simulated R,5(\).

shorter prediction time. A specific application or set of con-
straints will determine the most applicable model.

Unlike many standard AC algorithms, these models were
capable of doing AC without the extra short-wave infrared
(SWIR) bands, as they were trained on HS data in the wave-
length region 400-800 nm. Finally, the NN approach could
also be used for water IOP prediction, and provided R? >
0.999 when predicting CHL from R,s. The results when us-
ing synthetic data are comparable or outperforms the results
reported in [S)]. It should be noted that the underlying sim-
ulated data was trained for multispectral data in [5], and not
HS data as in this paper.

The different AC algorithms based on ML after training
are not computationally complex and, as shown in Tab. [3] can
be executed quickly, and therefore could suit operational use
in satellites as a part of the on-board data processing frame-
work. For future research, the ML models should be tested on
in-situ data and be validated against more conventional AC
algorithms, such as FLAASH, ATREM or POLDER [22} 3]].
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