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ABSTRACT

Destriping is an important hyperspectral image processing
procedure. Many variation-based methods show adequate de-
striping performance. However, global variation constraints
cause loss of texture information in unstriped image regions.
To alleviate this effect, we propose an adaptive anisotropy
total variation method to adaptively smoothen the striped
regions. Furthermore, considering the highly linear rela-
tionship among stripes, we introduce, for the first time, the
truncated nuclear norm to constrain the rank of the stripes
to 1. When combining the adaptive anisotropy total varia-
tion and the truncated nuclear norm, a hyperspectral image
destriping model is established, which can easily be solved
by the alternating direction method of multipliers (ADMM).
Experiments demonstrate the effectiveness and superiority of
the proposed destriping method.

Index Terms— Hyperspectral image, destriping, adaptive
anisotropy total variation, truncated nuclear norm

1. INTRODUCTION

Hyperspectral images acquired by pushbroom sensors of-
ten suffer from along-track (vertical) stripes, which greatly
reduce their applicability for visual interpretation and auto-
mated analysis. Nowadays, a plethora of works on hyperspec-
tral destriping has been investigated. Destriping algorithms
can be classified as either statistical [1], filtering-based [2] or
optimization-based methods [3—6]. Because they make strict
statistical assumptions on stripes, statistical methods are of
limited practicability [7]. Filtering-based destriping methods
often show blurring and staircase effects. [8].

Recently, optimization-based methods that incorporate
proper prior constraints into the ill-posed inverse destriping
problem, have attracted much attention because of their su-
perior performance. By merging the Huber-Markov variation
prior into a maximum a posteriori framework, a represen-
tative destriping and impainting method [3] was proposed.
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Later, Chang e al. [4] achieved better destriping by minimiz-
ing a spectral-spatial anisotropy total variation of the clean
image. An outstanding destriping approach was proposed [6],
co-regularizing the latent image and stripes, where the image
and stripes were constrained by the anisotropy total variation
and the nuclear norm, respectively. However, these variation-
based methods minimize the global variation of the latent
image, resulting in texture information loss in the unstriped
image parts. In [5], an optimized model, combining the low-
rank regularization of images and the control of the upper
cardinality bound of noise, produced adequate destriping re-
sults. However, these destriping algorithms require manual
tuning of parameters when regularizing stripes.

To overcome the above drawbacks, a new hyperspectral
image destriping method is proposed. Specifically, in order
to preserve the texture information in the unstriped regions,
while ensuring smoothness in the striped regions, an adaptive
anisotropic total variation method is proposed. Since theoret-
ically, each stripe can be expressed as a linear combination
of all other stripes, stripes have rank 1. As the truncated nu-
clear norm can better control the rank of a matrix [9], we pro-
pose to apply the truncated nuclear norm to constrain stripes,
such that no manual tuning parameter is required. Finally, a
destriping model, co-regularizing the adaptive anisotropic to-
tal variation and the truncated nuclear norm (AATT) is estab-
lished, and can be easily solved with the alternating direction
method of multipliers (ADMM).

The reminder of the paper is arranged as follows. In
Sec. 2, the proposed destriping model is explained. Experi-
mental results and discussion are presented in Sec. 3, while a
summary is given in Sec. 4.

2. PROPOSED DESTRIPING MODEL
A striped image can be expressed as:
Y=I1+S§, 1
where Y, I, S € RMXNXB represent the striped image, the

clean image, and stripes, respectively, and M, N, and B de-
note the number of rows, columns and bands of the image in



turn. In this paper, a new model is proposed for destriping by
estimating I and S from Y.

First, an adaptive anisotropy total variation method is pro-
posed to adaptively perform smoothness regularization, lim-
ited to the striped regions, so that texture information is pre-
served in the unstriped regions. Its key design idea is that the
regularization parameters are controlled by the gradients of
the stripes, such that no variation constraint is posed on re-
gions without stripe gradients. Since vertical stripes have no
vertical gradient, the proposed adaptive variation regulariza-
tion is only applied in the spectral and horizontal directions:

[I[|aary = [[A1 - Vl|[1 + [[A2 - V1|1, (2)

where ||I||aaryv expresses the adaptive anisotropy total
variation of the clean image, A; = min(| v/x S|, Sx) and
Ay = min(| 7, S|, 3,) are the regularization parameter
tensors, dependent on the spatial horizontal and spectral
gradients of stripes, respectively, for an adaptive variation
minimization, “” is the element-by-element multiplication
operation, \/, denotes the horizontal gradient operator, iden-
tical to the convolution with mask [1, —1]. Similarly, <7, rep-
resents the along-spectrum gradient operator. The minimum
threshold function min(-) avoids possible oversmoothing,
caused by overly large regularization parameters, with [,
and 3, being the thresholds along the horizontal and spectral
directions, respectively.

Theoretically, stripes are linearly dependent on each other,
meaning that they have rank 1. Since the truncated nuclear
norm is able to accurately constrain the rank of a matrix [9],
the truncated nuclear norm is utilized to constrain the rank of
stripes to 1. This rank constraint for stripes avoids the manual
tuning of a parameter.

Combining the above variation and rank regularization,
the proposed destriping model is obtained:
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where the first term is the data fidelity term, the other two are
L
the regularization terms. ||Sp||»- = > 0, (Sp) is the truncated

n=r
nuclear norm of Sy, Sy, is band b of the stripes image, L is the
number of nonzero singular values of S;, and r is set to 2, to
constrain the rank of S to 1.

Despite no analytical solution exists for (3), the proposed
AATT can be alternately solved under the ADMM frame-
work, as shown in Fig. 1. After introducing auxiliary vari-
ables, Lagrangian multipliers and quadratic penalty terms, the
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Fig. 1. Flowchart of the proposed AATT for hyperspectral destrip-
ing. AATV and TNN correspond to the adaptive anisotropy total
variation and the truncated nuclear norm, respectively

correspondingly augmented Lagrangian form is obtained:
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where W are the auxiliary variables, A; are the augmented
Lagrangian multipliers, and « > 0 is the penalty parameter.
The solving procedure of the proposed AATT is summarized
in Alg. 1, where the superscript k denotes the k-th iteration,
and §(0,¢) = sign(f) - max(|f] — ¢,0) is a soft-threshold
function [10].

Algorithm 1 Destriping by AATT

Input: Striped image Y, total number of iterations K
1: Initialization I = Y; S°, AV, A = 0
2: fork=1: K do
3:  Update | & by solving the following problem in Fourier
domain [4]
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4:  Update S*ina band-by-band way, following Theorem
3.1in [9]
5. Update W’f and W’f:
Wi =8(v, I"" — ATV a, [AT Y /a),
Wi =S( 71" = AL /o, (A3 /o)
6:  Update A’f and A’f:
A = AV 4 a(WE — 1),
Al = AL 4 a(WE - .IF)
7: end for
8: return I¥ and S as I and S, respectively
Output: Estimated image I and estimated stripes S
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3. EXPERIMENTS AND DISCUSSION

Destriping experiments were performed on two synthetically
striped images, generated from the Botswana and University
of Pavia images !. The Botswana image was captured by the
NASA EO-1 satellite over the Okavango Delta, Botswana;
the University of Pavia image was acquired by the ROSIS
sensor over Pavia university. After discarding the water ab-
sorption bands, two subimages of size 256 x 256 x 145 and
256 x 256 x 93 are cropped from the Botswana and Univer-
sity of Pavia images, respectively. Both subimages are lin-
early normalized to [0, 1] before destriping, and restored to
the original scale after destriping. The two striped images are
artificially produced by adding or subtracting a stripe of inten-
sity 7 to round(yN) (i.e, a integer obtained by rounding off
~N, where v denotes the stripe density) columns, randomly
selected from each band of the above two subimages.

For a comparative study, we apply the proposed AATT as
well as a number of state-of-the-art methods to destripe the
synthetic data. The comparison methods are the anisotropic
spatial-spectral total variation (ASSTV) [4], low-rank multi-
spectral image decomposition (LRMID) [6], and low-rank
matrix recovery (LRMR) [5] methods.

Table 1. Metrics on the Botswana image for different levels
of stripes.

n=04 n =0.6
Metrics | Method ol ¥
0.2 0.4 0.6 0.2 0.4 0.6

40.20 37.19 3540 |36.68 33.67 31.87
54.16 53.16 52.11|52.13 50.97 49.97
55.92 5438 53.35|53.56 52.53 51.80
50.82 48.73 47.23 | 48.15 45.52 44.16
56.14 54.26 53.60 | 54.42 52.66 51.80

Striped
ASSTV
LRMID
LRMR
AATT

PSNR

SSIM

Striped
ASSTV
LRMID
LRMR
AATT

0.8713 0.7723 0.6882
0.9884 0.9872 0.9844
0.9937 0.9922 0.9881
0.9832 0.9739 0.9632
0.9940 0.9918 0.9901

0.7720 0.6177 0.5097
0.9819 0.9793 0.9738
0.9902 0.9860 0.9841
0.9700 0.9468 0.9289
0.9908 0.9870 0.9848

SAM

Striped
ASSTV
LRMID
LRMR
AATT

0.4333 0.5791 0.6737
0.1207 0.1382 0.1493
0.1039 0.1248 0.1363
0.1476 0.1864 0.2095
0.0820 0.1049 0.1069

0.5996 0.7665 0.8678
0.1616 0.1772 0.2089
0.1367 0.1451 0.1531
0.1906 0.2594 0.3018
0.1024 0.1257 0.1449

SID

Striped
ASSTV
LRMID
LRMR
AATT

151.79 303.84 460.69
26.89 28.79 33.79
20.13 22.58 32.36
32.06 43.69 55.69
22.55 2631 29.03

239.26 484.27 732.82
35.03 41.36 52.42
25.62 35.14 39.82
48.11 76.41 104.84
27.24 33.09 38.49

As for the parameter settings, o and K are set as 0.1 and
50, respectively, while i, and y, are tuned within the ranges
[0.001,0.03] and [0.001,0.005], respectively. The peak
signal-to-noise ratio (PSNR), structural similarity (SSIM),

Thttp://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_
Sensing_Scenes

spectral angle mapper (SAM) and spectral information di-
vergence (SID) are calculated to quantitatively assess the
destriping effects. Higher values of PSNR and SSIM denote
a better reconstruction, while lower values of SAM and SID
denote a lower distortion of hyperspectral information.

Table 2. Metrics on the University of Pavia image for differ-
ent levels of stripes.

n=04 n =0.6
Metrics | Method ol ¥

0.2 04 0.6 0.2 0.4 0.6
33.29 30.28 28.49 | 29.76 26.75 24.96
53.31 51.85 50.73 | 51.17 50.13 48.83
54.69 53.59 52.01 |52.73 51.79 49.27
LRMR | 4391 4091 39.48 |42.60 40.07 37.52
AATT | 55.60 54.43 53.41 | 54.21 5345 51.10
Striped |0.6835 0.4760 0.3417(0.5227 0.2863 0.1634
ASSTV [0.9934 0.9904 0.9882|0.9893 0.9854 0.9817
LRMID|0.9950 0.9933 0.9908|0.9922 0.9891 0.9827
LRMR |0.9543 0.9093 0.8734|0.9388 0.8878 0.8262
AATT [0.9957 0.9940 0.99280.9933 0.9924 0.9886
Striped |0.7632 0.9300 1.0213|0.9469 1.1001 1.1771
ASSTV [0.1042 0.1135 0.1306|0.1271 0.1493 0.1602
LRMID|0.0903 0.0973 0.1156|0.1083 0.1266 0.1584
LRMR |0.2634 0.3811 0.4505|0.3046 0.4074 0.5209
AATT (0.0839 0.0935 0.1014{0.1007 0.1086 0.1279
Striped | 196.87 393.03 592.06(310.83 621.43 935.79
ASSTV| 10.13 14.19 17.42 | 15.85 21.23 26.19
LRMID| 7.80 10.19 13.44|11.74 1555 24.12
LRMR | 66.27 140.14 204.61| 89.71 164.84 242.77
AATT | 6.58 8.98 10.57 | 10.10 11.22 16.34

Striped
ASSTV

PSNR (LRMID

SSIM

SAM

SID

The results of the different methods on the images with
different levels of stripes are listed in Tables 1 and 2. In ad-
dition, for a visual evaluation of the considered algorithms,
the destriping results on the images with stripes of intensity
1 = 0.4 and density v = 0.6 are shown in Figs. 2 and 3.
LRMR that poses a low-rank constraint on the clean image
obtains the worst destriping performance, probably because
stripes are low-rank as well, so that the low-rank constraint
prevents a proper destriping. Both AASTV and LRMID per-
form better. AASTV poses no constraints on the stripes, while
LRMID does, but both apply a global TV on the clean im-
age. The best destriping results were obtained by the pro-
posed AATT, due to the adaptive anisotropy TV on the clean
image, preserving the unstriped regions, combined with the
truncated nuclear norm, for an improved constraining of the
stripes.

4. CONCLUSION

In order to preserve image information and avoid manual pa-
rameters when performing hyperspectral destriping, a method
combining an adaptive anisotropy total variation with a trun-
cated nuclear norm was proposed. More specifically, the
adaptive anisotropy variation was designed to adaptively
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Fig. 2. A band selected from the Botswana image. (a) Clean image.
(b) Striped image. Destriped images using (c) ASSTV, (d) LRMID,
(e) LRMR, and (f) AATT.

smoothen the striped image regions while preserving infor-
mation in the unstriped regions. To account for the linear
relation between stripes, a truncated nuclear norm regular-
ization without any manual parameters was employed to
constrain the rank of stripes. The proposed destriping method
was effectively optimized under the ADMM framework.
Experiments on synthetically striped images confirmed that
the proposed approach better removed stripes and preserved
information, compared to the state-of-the-art methods.

(a) (©)
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Fig. 3. A band selected from the University of Pavia image. (a)

Clean image. (b) Striped image. Destriped images using (c) ASSTV,
(d) LRMID, (e) LRMR, and (f) AATT.
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