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ABSTRACT

For transmitting the large amount of hyperspectral image
(HSI) data over a small data link from a small platform to
the ground, an efficient data compression with low computa-
tional cost has to be done at the platform. Additionally, spec-
tral band reduction interpreted as preprocessing of the com-
pression is reasonable. We present a method for hyperspec-
tral band reduction using a modified convolutional neural net-
work (CNN) which retains the information about the spectral
origin from layer to layer until it can be assigned directly to
the classes to be classified. The relevant bands for each class
are determined. Experimental verification shows that the net-
work architecture using only the relevant bands has improved
stability and results in a better overall performance.

Index Terms— hyperspectral band reduction, irrelevance
reduction, CNN

1. INTRODUCTION

Materials can be distinguished by their spectral characteris-
tics of absorption or reflectance. Based on this, hyperspectral
image (HSI) sensing allows the detection and identification
of specific materials, e.g. for geological mapping, for moni-
toring agriculture and forest status, for environmental studies,
for search and rescue services, for disaster managment or for
surveillance. For each hyperspectral image pixel, a HSI sen-
sor provides more than one hundred narrow and spectrally
contiguous channels with a bandwidth of a few nanometers,
ranging from the visible to infrared regions of the electro-
magnetic spectrum.

Having airborne applications in mind, we have to transmit
the large amount of data from a platform to the ground. That
requires either a large data link or a data compression already
done at the platform. We strive for a small data link. For pow-
erful data compression, standardized coding algorithms, e.g.
High Efficiency Video Coding (HEVC) [1] can be applied:
the two spatial dimensions in HSI are similar to a video im-
age; the third dimension of the HSI, the spectral dimension,
can be handled like the temporal dimension of a video codec
in order to reduce the spectral correlation [2]. Furthermore,
having in mind small platforms, we have to look for solutions

with low computational cost. On the ground a classification,
semantic segmentation or anomaly detection can be applied.

Typically, classification algorithms first of all reduce
the spectral dimensionality [3]. Thus, it is very efficient to
start with a spectral band reduction before the transmission.
Hence, spectral band reduction can be interpreted as a prepro-
cessing of the coding. Coding using HEVC is like a general
purpose redundancy and irrelevance reduction; whereas spec-
tral band reduction is a task specific irrelevance reduction
which can not be carried out by the codec. The band reduc-
tion deals with the determination of the relevant bands for a
specific classification task and can be done offline.

A general overview on hyperspectral band reduction is
given in [3]. In the area of ranking-based methods for clas-
sification, on the one hand many unsupervised methods like
the energy-based PCA in [4] and the feature-selection-based
method in [5] are known, on the other hand many supervised
methods e.g. based on feature extraction [6] or statistical de-
pendencies [7] exist. Typically, all these approaches try to
maximize the classification performance.

We propose a supervised ranking-based method where we
look for a solution which selects relevant bands for broadly
defined classes. Primarily, we want to omit definitly ir-
relevant bands. We modify a simple convolutional neural
network (CNN) [8] such that the information about spectral
wavelength is retained until the class decision determining
the relevant bands. The method is applied to natural and
man-made materials which is intended to be visually indis-
tinguishable.

The remainder of the paper is organized as follows: In
Sec. 2 we propose the band reduction method by describing
and analyzing the spectrally constrained CNN together with
the method for determining the relevant bands. We present
and discuss the experimental verification in Sec. 3 where the
applied data is described and the determination of the relevant
bands is presented. Furthermore, we compare the classifica-
tion performance using the determined relevant bands to that
using all bands. Sec. 4 concludes the paper.

2. BAND REDUCTION METHOD

We propose a method for spectral band reduction using a
spectrally constrained CNN. The designed network architec-



ture is introduced in Subsec. 2.1. In Subsec. 2.2 the network
architecture is analyzed. The determination of the relevant
bands is derived in Subsec. 2.3.

2.1. Spectrally constrained CNN

The network architecture comprises the following layers:

A 3D input layer expects one hyperspectral pixel as CNN in-
put data of size 1 x 1 x N where NV is the number of spectral
bands. The output is filtered in spectral dimension by a 3D
convolutional layer and applying M filters each with three
coefficients, that means that only three neighboring spectral
bands are considered for one output value of the 3D convo-
lutional layer. Therefrom, we call the CNN spectrally con-
strained (scCNN). The output of the convolutional layer re-
sults in a matrix of size 1 X 1 x N x M.

The 3D convolutional layer is followed by a batch nor-
malization layer, a rectified linear unit layer and a fully
connected layer. At its output we get K logits used for clas-
sification.

2.2. Analyzing the network architecture

The elements of the third dimension of the CNN input can be
assigned to the wavelengths of IV bands. After the convolu-
tion we get an output of size 1 x 1 x N x M, The number
of filter coefficients is only three which means that only three
neighboring spectral bands are taken into account by each fil-
ter. This corresponds to a spectral selection. Hence, we call
our network architecture spectrally constrained. Because of
this spectral constraint, the third dimension still represents
the wavelength and the network architecture retains this in-
formation up to the input F' of the fully connected layer. On
the other hand, the classification can be retraced directly to
the output H of the fully connected layer. Its output H =
(Hy,--- ,Hg,- -, Hg) is directly assigned to the K classes.

The output Hj, of class k is computed by the fully con-
nected layer as

N M

n=1m=1

where the parameters f,,,, represent the input F' over the
N spectral bands and M features, and the parameters Wy,
represent the parameters W = (Wy,--- Wy, .-+, Wg) of
the fully connected layer. The parameters of class k are given
by
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2.3. Determination of the relevant spectral bands

By analyzing and calculating the arithmetic operation of the
fully connected layer, the relevant bands for each class can be
determined as explained in the following. For a better under-
standing, without loss of generality, we consider one class k
only.

Eq. 1 can be written as
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In a first step the Hadamard product of the input matrix F’
with the parameter matrix Wy, results in a matrix
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In a second step, the inner summation over M sums up
the features contained in a column n of Eq. 4 to

M

m=1

As a reminder, each sum gy, at position n is assigned to
the wavelength of the spectral band 7.

The column sums gz, can be grouped into a vector and
normalized to
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of length N where high values indicate that they con-
tribute significantly to the class decision.

From G, norm We derive a class relevance vector Ry, =
(Pk1y -+ Tkns---,7kn) Of class k by considering only high
values above a threshold 7}, by

(gk'n)
Thn = {1 for Maz(g1s-- s Jkn gk N ) > Tk . (7)

0 else

We can calculate Ry, for all k classes and derive the rele-
vance vector R = (r1,...,7y,...,7N) by

1 for Y rgn >1
k 3)

Ty =
0 else

where for all relevant bands R is equal to 1.



3. EXPERIMENTAL VERIFICATION

In the experimental verification we considered the two classes
“natural fruits’ and *man-made fruits’ which had to be clas-
sified. The recorded natural fruits are green, yellow, red
and multicolor apples, lemons, quince, melon, banana, green
pepper, cucumber, pumpkin and avocado; the recorded man-
made fruits are green, yellow, red and multicolor apples,
lemon, green and orange pepper (Sec. 3.1).

We applied the proposed network (Sec.2.1) architec-
ture. Determining the relevant spectral bands is described
in Sec. 3.2. In Sec. 3.3 test accuracies using the determined
relevant spectral bands are compared with those using all
spectral bands.

3.1. Recording and preparation of data

Several HSI were recorded using a NEO VNIR-1800 sensor
with 186 spectral bands ranging from 400 to 1000 nanome-
ters and 1800 samples/line. The natural and man-made fruits
were recorded under different light conditions using day-light
lamps, halogen lamps and natural daylight. Each recorded
HSI was converted to HSI reflectance data using a 100% re-
flecting calibration target as shown in the image in Fig. 1 on
the left side.
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Fig. 1. Spectral signatures of HSI shown with RGB image

HSI pixels of both classes were manually picked from 4
recorded HSIs resulting in 7200 HSI pixels in the class "natu-
ral fruits’ and 4080 HSI pixels in the class man-made fruits’
as shown in Table 1 (available under [9]). Associated spectral
signatures are shown in Fig. 1. The HSI was partitioned into
blocks of 8x8 HSI pixels, each block was averaged resulting
in one preprocessed HSI pixel with N = 186 each. The aver-
aging smoothes the spectral signature by reducing noise.

Table 1. TNT Hyperspectral Test Set Fruits

Data Set (No.of pixel)
natural (7200) man-made (4080)
green apple (960) green apple (960)
yellow apple (480) yellow apple (480)
red apple (480) red apple (480)
multicolor apple (480) multicolor apple (960)
lemon (1600), banana (400) lemon (400)
yellow pepper (400) orange pepper (400)
green pepper (400) green pepper (400)

melon (400), quince (400)
pumpkin (400), avocado (400)
cucumber (400)

3.2. Relevant spectral bands

The preprocessed HSI pixel constitutes the CNN input data.
By varying the number of features M in the convolution layer
from 2 to 20 in steps of 2, it was found out that this hyperpa-
rameter combines high accuracy and small complexity best at
M = 8. The initial learning rate was set to 0.01.

The proposed scCNN was trained with 1760 pixels of nat-
ural fruits (green and yellow apples, banana, lemon) and 960
pixels of man-made fruits (green and yellow apples). The
data of the remaining fruits was used for testing. As soon as
the test data showed that the network parameters were well
trained, we started to determine the relevant bands.

For the determination of relevant bands we used a/l train-
ing and test data to ensure that the resulting bands are valid
for broad classes. Using Eq. 7 we chose the thresholds 77 =
0.015 and 75 = 0.025 to eliminate noise in G, norm. This
results in the class relevances R for ’natural fruits’ and Ro
for “man-made fruits’, the associated G, norm i illustrated
in Fig. 2 for both classes.

Fig. 2 shows that essentially the spectral bands belong-
ing to the VNIR spectrum are relevant for the classification.
The bands in the electro-optical spectrum do not influence
the classification crucially. This is not surprising since the
man-made fruits have been designed to look like real ones.
Differences in the electro-optical spectrum are being ignored,
accordingly.

With Eq. 8 we get the relevant bands 90 to 152 and 158 to
185.

3.3. Applications

We applied the proposed network architecture in an experi-
mental setup (Sec. 3.3.1) using the data of Sec. 3.1. The hy-
perparameter /N, number of spectral bands, contains either the
relevant bands or is equal to all bands (Sec. 3.3.2).

For a more rigorous testing the training data was reduced
to 960 HSI pixels of natural respective man-made apples
(green and yellow).
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Fig. 2. Spectral band contribution to class decision

Table 2. Modes of the experimental setup

Mode  Training Test
1 averaged  averaged
2 averaged  pixelwise
3 pixelwise pixelwise

Starting with 10 different randomly initialized network
parameter sets, we trained the CNN 10 times for each hyper-
parameter N resulting in 10 different sets of trained network
parameters Py, Pp ..., Pg, ..., Py each.

3.3.1. Experimental Setup

Fig. 3 shows the block diagram of the experimental setup.
First, the HSI reference data is preprocessed. The prepro-
cessing comprises an optional spectral band reduction to the
relevant bands and an optional averaging as in 3.1. The output
of the preprocessing represents the data set of the CNN. Af-
ter the preprocessing, one HSI pixel or an averaged HSI pixel
represent the [V spectral values of the CNN input data. The
number of features is M = 8 as in 3.2.

Three different modes were investigated by varying the
averaging in the preprocessing. The different modes are
shown in Table 2. We used the same network architecture
for all modes. Only the hyperparameter of the spectral input
dimension varied depending on the reduction of bands in the
preprocessing.

The data set had to be partitioned into either training &
validation data or test data for using a CNN. The training &
validation process contained 1920 pixels, the test process the
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Fig. 3. Experimental setup

remaining pixel.

3.3.2. Classification

First, let us consider the relevant spectral bands determined in
Sec. 3.2. Fig. 4 shows the resulting test accuracy of all three
modes for 10 different sets of network parameters.
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Fig. 4. Test accuracy using relevant bands

Next, let us consider all 186 spectral bands. Fig. 5 shows
the resulting test accuracies of all three modes for 10 different
sets of network parameters each.

For a better comparison we evaluated the mean m and
standard deviation o of the test accuracies over the sets of
network parameters of each mode for both investigated band
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Fig. 5. Test accuracy using all bands

Table 3. Evaluation of sScCNN

Mode ms.cNN  Mall  OscCNN  Oall
1 0.992 0.952 0.005 0.033
2 0.988 0.952 0.006 0.031
3 0.987 0.930 0.007 0.072

numbers shown in Table 3.

For the scCNN all three modes result in very high test ac-
curacies for all network parameters. The mean accuracy in all
three modes is higher compared to that of the all-band-CNN
(Table 3). Fig. 4 and Fig. 5 show that the scCNN works more
steadily as supported by comparison of the standard devia-
tions in Table 3. Thus, the small training data set works well
with the reduced number of bands.

When using a smoothed spectral signature (mode 1 and 2)
in the training process, the results are more steady compared
to training processes on a noisy spectral signature (mode 3).
This shows that the scCNN is noise sensitive. Otherwise, us-
ing averaged or pixelwise test data (mode 1 or 2) influences
the test accuracy only slightly. Hence, mode 2 is appropriate
as a starting point for semantic segmentation where a stan-
dard segmentation can be applied spatially and the proposed
approach orthogonally in the spectral dimension.

4. CONCLUSION

We presented a method for hyperspectral band reduction us-
ing a spectrally constrained CNN which we modified such
that it retains the information about the spectral origin from
layer to layer until it can be assigned directly to the classes
to be classified. The relevant bands for each class were de-
termined. Experimental verification showed that the network
architecture using only the relevant bands results in a better
and more steady overall performance.
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