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ABSTRACT 

 

We established a risk screening and grading model and a 

content estimation model for zinc pollution in bare soil. We 

built these models using the machine learning algorithms 

Support Vector Machine (SVM), Generalized Linear Model 

(GLM), Multivariate Adaptive Regression Spline (Mars), 

Random Forest (RF), XGBoost, Ridge Regression (Ridge), 

and Cubist based on UAV hyperspectral data and heavy 

metal field fast detection data in typical potentially 

contaminated sites. The parameters of the hyperspectral data 

were original reflectivity, smoothed reflectivity, first-order 

derivative, second-order derivative, and the de-enveloping 

spectrum. The results showed that to classify soil zinc 

pollution risk, the machine learning model based on the 

second-order derivative spectrum performed better than the 

other hyperspectral parameter independent variables. The 

overall classification accuracy of the MARS model based on 

the second-order derivative spectrum was 89.29%. The 

XGBoost model based on the second-order derivative 

spectrum performed the best in estimating zinc content, with 

results of R2 = 0.59. When the zinc (Zn) content was less 

than 1000mg/kg, the model accuracy was stable. This 

method doesn’t rely on soil samples, and thus avoids 

uncertainty caused by the selection of sensitive bands in 

heavy metal inversion. This method provides a basis for 

large-scale fast investigation of soil heavy metal pollution 

based on limited ground monitoring point data. 

 

Index Terms— Unmanned Aerial Vehicle 

Hyperspectral Data, Machine Learning, Fast Field Detection 

of Heavy Metals in Soils, Risk of Heavy Metals Pollution in 

Soils, Estimation of Heavy Metals Content in Soils 

 

1. INTRODUCTION 

 

A polluted site is a place where hazardous chemicals or 

other toxic and harmful substances are produced, managed, 

used, or stored. A polluted site also contains solid wastes 

such as household garbage, hazardous waste, or other 

harmful wastes that are piled up or disposed of; activities 

such as mining are also carried out within the site. At 

polluted sites, the pollutants in the soil and groundwater 

exceed the relevant national standards, and there are risks to 

human health or the ecological environment. To support soil 

environmental quality monitoring for heavy metal 

contamination in potentially contaminated sites, we applied 

remote sensing inversion methods developed to spatialize 

the data of limited ground monitoring points. 

Elements monitored for heavy metal pollution are 

mainly cadmium (Cd), mercury (Hg), copper (Cu), lead (Pb), 

Chromium (Cr), zinc (Zn), nickel (Ni). Arsenic (As) is a 

non-metal, but its chemical properties and environmental 

behavior are similar to those of heavy metals, thus, arsenic 

is included in the study of heavy metal soil pollution. At 

present, many studies on remote sensing of soil heavy metal 

inversion are based on laboratory research. Selection of 

sensitive bands for heavy metal inversion by stepwise 

regression and correlation analysis are made based on 

laboratory measurement (or field measurement) spectra of 

soil samples and laboratory measurement of heavy metal 

data, in combination with the spectral response mechanism 

of the heavy metals in the soil and spectral characteristics of 

active substances (iron oxides, organic matter, clay minerals, 

etc.). Partial least square regression PLSR, BP neural 

network, and other analysis methods have been applied to 

build the soil heavy metal content inversion model [1-8]. The 

field exploration research is based on aerial hyperspectral 

data and heavy metal data measured in the soil sample 

laboratory, and the inversion model of the heavy metal 

content in soil is established by regression analysis and 

other methods [9-10]. It is difficult for modeling to meet the 

monitoring needs due to the large number of samples from 

the ground, the heavy metal content measurement and 

spectral measurement in the laboratory, and the instability of 

the sensitive band selection. 

Based on the synergistic acquisition of UAV 

hyperspectral data from typical potentially contaminated 



sites and soil heavy metal on-the-spot fast detection data, we 

established a screening and grading model and a content 

estimation model for bare soil zinc pollution risk without 

collecting soil samples combining multiple machine 

learning algorithms to avoid uncertainty caused by the 

inversion of the sensitive band selection of heavy metals, 

thus, providing a technical means for fast, large-scale 

investigation of heavy metal contamination in soils. 

 

2. DATA 

 

In January 2019, we selected typical potential contamination 

sites in Shaoguan, Guangdong Province, to conduct soil 

contamination site investigation and open-space 

synchronous stereo monitoring experiments. We acquired 

unmanned aerial vehicle (UAV) hyperspectral images and a 

ground synchronous point soil heavy metal field fast 

detection dataset in the experimental area. 

 

2.1 UAV Hyperspectral Data 

 

Headwall Nano-Hyperspec Imaging Spectrometer (Fig. 3) 

was mounted on the unmanned aerial vehicle (UAV) 

platform. UAV hyperspectral data was acquired. The 

acquisition and parameters of the hyperspectral data are 

listed in Table 1 and Figure 4. The data was preprocessed 

for orthorectification, atmospheric correction, image 

stitching, etc. 

 

   
 

Figure 1. Unmanned aerial vehicle (UAV) flight status (left) 

and onboard Headwall Nano-Hyperspec imaging 

spectrometer (right) 

 

Table 1. Headwall Nano-Hyperspec hyperspectral data  

parameters and data acquisition 

Index Parameter Values 

Spectral Range 400-1000 nm 

Number of Channels 271 

Spectral Resolution 6 nm 

Spatial Resolution 0.093 m-0.18 m 

Flight Sorties 9 

Coverage 4.2km2 

   
 

Figure 2. Hyperspectral image (left) of single flight 

unmanned aerial vehicle (UAV) in the experimental area 

and data cube (right) 

 

2.2 Ground Survey Data 

 

Ground real-time data was obtained synchronously with the 

UAV hyperspectral data. Thirty-eight ground synchronization 

locations were selected in the experimental area, and 38 sets 

of soil heavy metal field fast detection data were obtained 

using the German SPECTRO portable X-ray fluorescence 

soil heavy metal analyzer. At the same time, 14 sets of 

aerosol optical thickness data were obtained using 

Microtops II solar photometer for atmospheric correction of 

UAV hyperspectral data. 

 

2.3 Hyperspectral Characteristic Parameters 

 

The original reflectance (Ref), smoothed reflectance 

(Ref_Smoothed), first-order derivative of reflectance 

(Ref_1st), second-order derivative of reflectance 

(Ref_2nd), and de-enveloped spectrum (Ref_CR) were 

used to obtain the 5 hyperspectral characteristic parameters. 

Among them, the Savitzky-Golay filtering method was 

used for spectral smoothing, with parameters N Left and 

N Right set to 5, Order set to 0, and Degree set to 2. The 

hyperspectral characteristic spectral contrast is shown in 

Figure 3. 



 
Figure 3. Hyperspectral characteristic spectral contrast 

 

3. METHOD 

 

3.1 Modeling Method 

 

3.1.1 Soil heavy metal pollution risk screening and grading 

model 

Referring to China's Soil Environment Quality Risk 

Control Standard for Soil Contamination of Agriculture 

Land, the screening values of heavy metal elements for 

agricultural land pollution risk were selected as thresholds, 

and the risk level of heavy metal elements pollution was 

divided into two levels: low risk and high risk. Based on 

the UAV hyperspectral data and the field fast detection 

data of heavy metals in soil, the risk level of heavy metals 

was set as the dependent variable. The independent 

variables were original reflectivity, smooth reflectivity, 

first-order derivative of reflectivity, second-order 

derivative of reflectivity, and the de-enveloping spectrum. 

Moreover, 5 machine learning algorithms were used in the 

classification: Support Vector Machine (SVM), the 

Generalized Linear Model (GLM), Multivariate Adaptive 

Regression Spline (Mars), Random Forest (RF) and 

XGBoost. The risk screening and classification model of 

heavy metal pollution was constructed based on the 

hyperspectral parameters. 

 

3.1.2 Estimation model of heavy metal element content in 

soil 

Based on classification of the risk level of heavy metal 

elements, we further quantitatively estimated the content 

of heavy metal elements. The content of heavy metals was 

set as the dependent variable. The independent variables 

were original reflectivity, smooth reflectivity, first-order 

derivative of reflectivity, second-order derivative of 

reflectivity, and the de-enveloping spectrum. Moreover, 7 

machine learning algorithms were used in fitting: SVM, 

Ridge, Generalized Linear Model GLM, MARS, RF, 

XGBoost, and Cubist. A model for estimating heavy metal 

element content based on hyperspectral parameters was 

established. 

 

3.2 Accuracy Evaluation Method 

 

Due to the limited number of simultaneous acquisitions of 

ground detection points, we verified the accuracy of the 

model using a cross-validation method. Overall accuracy 

was used as the accuracy evaluation index for the risk 

screening and grading model of heavy metal pollution, and 

the coefficient of determination R2 (Formula 1) and Mean 

Absolute Error (Formula 2) were used as the accuracy 

evaluation index for the estimation model of the heavy 

metal element content. 
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Where yi is the observed value, ei is the residual between the 

observed value and the predicted value, and ei is the average 

of yi. 

 

4. RESULT 

 

In the dataset of soil heavy metal fast detection 

corresponding to 38 ground synchronization points, the zinc 

(Zn) element had the most detection points, with a total of 

28 field detection points. Thus, we selected zinc (Zn) for 

modeling and verification. 

 

4.1 Screening and Grading Results of Zinc (Zn) 

Pollution Risk 

 

Based on the screening threshold of the Zn element 

(250mg / kg), all 28 samples were divided into two levels: 

low risk and high risk. We set these two levels as dependent 

variables and set the 5 hyperspectral characteristic 

parameters mentioned in 2.3 as independent variables. We 

established the modeling based on the 5 machine learning 

algorithms of SVM, GLM, Mars, RF, and XGBoost. We 

determined the optimal model by calculating the overall 

classification accuracy of each variable under each machine 

learning model using cross-validation (Table 2). 

 

Table 2. Overall classification accuracy of cross-validation 

of Zn element risk level (unit%) 

 SVM GLM MARS RF XGB 

Ref 53.57  60.71  28.57  57.14  64.29  

Ref _Smoothed 53.57  78.57  67.86  60.71  75.00  

Ref _1st 71.43  46.43  57.14  71.43  82.14  

Ref _2nd 82.14  50.00  89.29  82.14  85.71  

Ref _CR 53.57  78.57  67.86  57.14  67.86  



In terms of the overall classification accuracy, the 

overall performance of the machine learning model based on 

the second-order derivative spectrum was better than that of 

other independent variables. The overall classification 

accuracy of the MARS model based on the second-order 

derivative spectrum was 89.29%, followed by the XGBoost 

model (85.71%). Table 3 shows the classification confusion 

matrix of the MARS model based on the second-order 

derivative spectrum. The classification accuracy of high-risk 

samples is 71.4%, and that of low-risk samples is 83.3%. 

 

Table 3. Risk level classification confusion matrix of zinc 

based on the second-order derivative spectrum and MARS 

model 

  Observed value 

  Low risk High risk 

Estimated 

value 

Low Risk 12 4 

High risk 2 10 

 

4.2 Estimation Results of Zinc (Zn) Content 

 

Table 4 and Table 5 list the cross-validation results based on 

5 spectral characteristic parameters as independent variables 

and cross-validation results based on 7 machine learning 

algorithms, respectively, to estimate the zinc content. 

 

Table 4.  Cross-validation R2 value of zinc content 

 SVM RIDGE GLM MARS RF XGB CUBIST 

Ref 0.00  0.01  0.02  0.12  0.03  0.08  0.00  

Ref _ 

Smoothed 
0.00  0.00  0.00  0.14  0.03  0.08  0.03  

Ref _1st 0.21  0.17  0.11  0.00  0.35  0.43  0.44  

Ref _2nd 0.31  0.18  0.26  0.05  0.40  0.59  0.18  

Ref _CR 0.00  0.03  0.00  0.14  0.02  0.06  0.06  

 

Table 5. Cross-validation MAE value of zinc content  

(unit: mg/kg) 

 SVM RIDGE GLM MARS RF XGB CUBIST 

Ref 373.23  401.72  1792.01  444.33  456.22  389.08  463.32  

Ref _ 

Smoothed 
374.03  413.70  3675.44  448.32  471.76  421.47  456.89  

Ref _1st 339.18  339.92  5102.24  429.57  298.98  266.59  266.24  

Ref _2nd 328.03  348.17  3557.41  479.01  302.72  214.93  374.00  

Ref _CR 367.37  389.96  3675.44  448.32  473.31  411.08  462.04  

 

According to the result of R2 and MAE, XGBoost had 

the best performance among the 7 machine learning 

algorithms. Based on the second-order derivative spectrum, 

the XGBoost model’s R2 was 0.59, and MAE was 

214.93mg/kg. When the zinc content in the field was less 

than 1000mg/kg, the accuracy of the model was stable. 

 

5. CONCLUSION AND DISCUSSION 

 

Based on the UAV hyperspectral data and the soil heavy 

metal fast detection data in the typical potential pollution 

site, combined with a variety of machine learning 

algorithms, we established a risk screening and 

classification model and a content estimation model of zinc 

pollution in bare soil. The general summary is as follows: 

1) The results of validation of the risk screening and 

grading model for zinc (Zn) pollution show that the machine 

learning model based on the second-order derivative 

spectrum performs better overall than other hyperspectral 

independent variables. The overall classification accuracy of 

the MARS model based on the second-order derivative 

spectrum was 89.29%, followed by the XGBoost model 

(85.71%), with a classification accuracy of 71.4% for high-

risk samples and 83.3% for low-risk samples. 

2) The XGBoost model based on the second-order 

derivative spectrum had the best performance, with a result 

of R2 = 0.59 and MAE = 214.93 mg/kg, validating the 

estimation model of zinc (Zn) content. When the zinc (Zn) 

content observed in the field was less than 1000mg/kg, the 

accuracy of the model estimation was stable. 

The modeling and validation results show that we can 

neglect soil sample collection due to the availability of UAV 

hyperspectral data along with a small amount of ground 

synchronization point soil heavy metal fast on-site detection 

data. Further, combining this with a variety of machine 

learning algorithms, we can avoid uncertainty caused by 

selection of sensitive bands in heavy metal inversion. Based 

on this method, the established screening and grading model 

for the risk of zinc pollution in bare soil and the content 

estimation model have good accuracy. It can provide a 

reference for large-scale and fast investigation of soil heavy 

metal pollution based on limited ground monitoring point 

data. In future research, we will establish a model that 

includes more experimental areas with bare soil area. Based 

on this method, we can obtain maps of heavy metal element 

pollution risk and content distribution in the experimental 

area, which will provide technical support for large-scale 

soil pollution monitoring and dynamic assessment based on 

UAV hyperspectral data. 
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