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ABSTRACT 

 
A new framework for advanced machine learning-based 
analysis of hyperspectral datasets HSKL was built using the 
well-known package scikit-learn. In this paper, we describe 
HSKL’s structure and basic usage. We also showcase the 
diversity of models supported by the package by applying 17 
classification algorithms and measure their baseline 
performance in segmenting objects with highly similar 
spectral properties. 
 
Index Terms— Hyperspectral Imaging, Machine Learning, 
Image classification 
 

1. INTRODUCTION 
 

High-quality classification and regression models are 
fundamental to the most workflows in hyperspectral image 
(HSI) analysis. The typical tasks range from classification of 
skin lesions in medical diagnostics [1], to detecting oil spills 
in remote sensing [2]. There is a need for a greater selection 
of data-driven machine learning algorithms for the rapidly 
increasing type and volume of hyperspectral data. Numerous 
commonly used statistics-based algorithms for denoising, 
dimensional reduction, clustering, and classification have 
been adapted for HSI analysis. However, their capabilities are 
not sufficient to distinguish subtle differences in the spectral 
- spatial domains. While deep learning approaches have been 
developed in HSI [3] they are mostly limited by availability 
of large standardized and labeled datasets for training and 
testing. Moreover, the typical researcher does not have the 
access to data at the scale where deep learning models can be 
efficiently trained. An intermediate approach that provides 
fast satisfactory results from relatively small HSI datasets is 
highly appreciated.   

In this work, we present a software package, 
hyperspectral-scikit-learn (hereon referred to as HSKL) for 
relatively quick and convenient identification of objects in 
hyperspectral datasets. HSKL aims to provide researchers 
and engineers in hyperspectral imaging with an easy-to-use 
interface to a family of machine learning algorithms in the 
popular python package scikit-learn. Scikit-learn is a well-
known versatile library of established and validated 

algorithms with a consistent interface and a rapidly growing 
number of classifications, regression, and clustering models 
[4]. In comparison to previous rather segmented approaches, 
algorithms in scikit-learn provide baseline performance that 
enables researchers to carry out classification or regression 
tasks with limited data and minimal labeling. Importantly for 
hyperspectral data analysis, different estimators and 
transformations can be combined using the straightforward 
pipeline application programming interface for training 
composite or ensemble models.  

Despite the advantages of scikit-learn for data analysis, 
the direct processing of hyperspectral datasets with this 
package is time-consuming requiring careful transformations 
of the image, labels, and masks. Even though user can always 
apply scikit-learn directly to process hyperspectral data, the 
workflow of transforming the images to a scikit-learn 
compatible format can be highly error prone because of the 
many manual steps involved. HSKL streamlines this process 
through i) handling direct transformation of hyperspectral 
image input to scikit-learn-compatible matrices, and ii) 
providing availability of common and emerging utilities to 
pre-process hyperspectral images. This approach establishes 
a flexible yet standardized workflow to data analysis and 
reduces boilerplate code required to perform machine 
learning studies on hyperspectral data. With a few lines of 
code, HSKL users can train and use models, which take 
hyperspectral images as input and obtain high quality pixel-
wise or image-level labels, thus achieving the goal of many 
hyperspectral data analysis.  

Herein, we present an introduction to the HSKL software 
package, apply a collection of classification algorithms to an 
example hyperspectral dataset acquired on a bench-top 
hyperspectral system, and compare baseline model 
performance. 
 

2. HSKL DESCRIPTION 
 

The basic workflow for HSKL is shown in Figure 1. The 
workflow included the following elements. Preprocessing: 
Though algorithms in scikit-learn do not explicitly require 
preprocessing, normalization, dimensional reduction and 
other standard steps, they are often necessary to achieve a 
satisfactory performance. For example, dimensional 
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reduction techniques such as principal component analysis 
(PCA) and endmember decomposition might serve to remove 
noisy channels and decrease the amount of data to the most 
essential components. Load images and labels: With the 
exception of unsupervised clustering, most algorithms in 
HSKL requires some labeling of the training data. The 
package allows for convenient input of pixel-level labeling 
and masking, accelerating model development workflow. 
Estimator fit: This function implements model training for 
most estimators in scikit-learn using training hyperspectral 
images and labels. This includes but are not limited to 
Classification, Regression, and Clustering algorithms. The 
outcome of this module is the trained model that can be 
applied for inference. Estimator predict: The trained model 
from the fit stage is used for predicting and assigning labels 
for previously unseen data.  

 
Figure 1. Overview of features in HSKL and relation to 
hyperspectral image analysis workflow. 

 
HSI-Learn is designed to work with NumPy arrays, with a 
syntax fully compatible with that of scikit-learn. The 
following listing shows the minimal code required to train a 
classifier model. The desired method name can be passed to 
initialize the model, with the default option being Random 
Forest. As consistent with scikit-learn, the classifier features 
fit() and predict() methods to train the model and apply 
inference, respectively. 

Listing 1. Basic usage for HSKL. 
 
Figure 2 shows the structure of the codebase. The 
BaseEstimator, ClassifierMixin, and RegressorMixin classes 
are all belong to scikit-learn. The BaseEstimator class 

implements basic setter and getter methods for the model 
parameters; the ClassifierMixin and RegressorMixin classes 
implements accuracy scoring functions. Unlike scikit-learn 
estimators, the fit and predict methods are implemented in 
the parent class HyperspectralEstimator, which handles 
transformations and masking of hyperspectral images. 
Additionally, a utilities module (hskl.utils) is provided to 
generate overlay visualization of labeled images, spectral 
normalization, and dimensional reduction using PCA. 

 
Figure 2. Visualization of the HSKL codebase as a class inheritance 
diagram. Shown also is a non-exhaustive list of models supported 
by HyperspectralClassifier and 
HyperspectralRegressor. 

 
3. APPLICATION OF HSKL  

 
The images were collected using and HSI imaging system in 
shortwave-infrared (SWIR). The imaging HSI pushbroom 
data system featured an SWIR sensitive 2D InGaAs 
thermoelectrically cooled CCD camera (Ninox, Raptor), a 25 
mm focal length SWIR lens (StingRay Optics), an imaging 
spectrograph Imspector N17E (Specim), and a linear, PC-
controlled movable stage (Middleton Inc.). These 
components were integrated by Middleton Inc. into a stand-
alone image acquisition system. The system provided 
negligible chromatic aberration in the range of 600-1600 nm. 
Two conventional incandescent 2x50 W halogen lamps with 
broad output from 400 to 2500 nm were used as the light 
sources.  

The data were processed for spectral analysis, PCA and 
endmembers using a hyperspectral imaging software IDCube 
(HSpeQ LLC). The number of the endmembers was 
performed by the noise-whitened Harsanyi–Farrand–Chang 
(NWHFC) method. After the extraction procedures, all 
endmembers were presented through the corresponding 
abundance maps using N-finder [5]. A map for each 

import hskl.classification as classification 
 
# Load training, testing, and label images 
train, test, label = ... 
 
# Train a classifier and predict test image 
cl = classification.HyperspectralClassifier( 
         method_name=”RandomForest”) 
cl.fit(train, label) 
prediction = cl.predict(test) 



endmember was visually evaluated and the best combinations 
of two endmembers corresponding to the objects were used. 
Four types of objects: polymeric round dish, centrifuge tubes, 
a coin, and a plastic wrench (Figure 3) were scanned with 
HSI-SWIR as shown in Figure 4A. The dataset is considered 
challenging to segment because the material composition of 
the centrifuge tube and the plastic wrench are similar, 
although colored with a different pigment. These colors are 
visible to human eyes and conventional visible cameras with 
Si-based sensors (blue vs. green) (Figure 3), but not visible 
in SWIR because the pigments are not optically active (do not 
absorb photons) beyond 1,000 nm. Because of the lack of 
spectral difference (Figure 4B), conventional methods, such 
as PCA (Figure 4C) or endmember analysis (Figure 4D) 
were unable to distinguish between the two.  
 

 
Figure 3 Objects in a dataset with the visible camera. 

 
Figure 4 Example image set. A: Pseudo RGB image using image 
of training data made in SWIR 1094 nm (red), 1301 (green), 1475 
nm (blue). B: Normalized spectra of the wrench and the tube from 
the selected region of interests. Spectral correlation is 0.93; C: PCA 
in pseudo RGB: component 1 (red), component 2 (green), 
component 3 (blue). D: Endmembers in pseudo RGB (see text).   

Two HSI datasets were acquired, one for model training and 
one for testing. Both datasets were segmented manually using 
MATLAB’s Image Labeler. For preprocessing, power 
normalization in the spectral domain was applied to both 
images according to: 

𝐼𝐼𝑛𝑛(𝑥𝑥,𝑦𝑦,𝜆𝜆) =
𝐼𝐼(𝑥𝑥, 𝑦𝑦,𝜆𝜆)

∫ [𝐼𝐼(𝑥𝑥,𝑦𝑦,𝜆𝜆)]2𝑑𝑑𝑑𝑑𝜆𝜆1
𝜆𝜆0

 

 
where 𝐼𝐼 is the acquired image; 𝐼𝐼𝑛𝑛 is the normalized image; 𝑥𝑥, 
𝑦𝑦 and 𝜆𝜆 are the spatial and spectral dimensions, respectively. 
The support of captured spectra is from 𝜆𝜆0 to 𝜆𝜆1. 
 
After normalization, PCA was applied to the training image, 
reducing the spectral dimension from 510 channels to 19 
channels, which contain 80% of the data variance. The 
eigenvectors were then used to transform the testing image 
into the same space, also with 19 channels. 
Model training and testing were carried out using hskl.  
Seventeen models were trained using different classification 
methods. These are: AdaBoost [6], Bagging [7], Bernoulli 
and Gaussian Naïve Bayes (NB) [8] , Decision Tree [9], Extra 
Trees [10], Random Forest [11], Gradient Boosting [12], 
Linear and Quadratic Discriminant Analysis (LDA and 
QDA) [13], Support Vector Classifier (SVC) [14], Logistic 
Regression, Multi-layer Perception (MLP) [15], Ridge 
Classifier [16], and Stochastic Gradient Descent [17]. Since 
we were evaluating the baseline performance, all models 
were trained with default parameters as defined in scikit-
learn, with no further hyperparameter tuning. 
 

4. RESULTS 
 

The results summarized in Figure 5 shows the model-
predicted labels for pixels in the test set. As expected, in most 
cases, error from misclassification of the centrifuge tubes was 
most severe. However, the majority of the classifier models 
were able to separate the two objects based on spectral 
characteristics.  
The predicted labels were compared with ground truth labels 
in the manual segmentation. The precision, recall, and F-
score were used to assess model testing performance. For 
each object, the metrics were computed in a binary one-vs-
rest fashion (e.g., wrench vs. non-wrench, coin vs. non-coin). 
Precision, recall and F-scores for all objects and classification 
methods are shown in Figure 6. Almost all models resulted 
in good predictions for the plastic wrench, coin, and rubber 
cap, with precision, recall, and F-scores of ≥0.8. The sole 
exception is the AdaBoost classification of the coin, in which 
some pixels are misclassified as background and vice versa.  

Pixels belonging to the centrifuge tubes are more difficult 
to classify. This is mostly due to its similarity with the plastic 
wrench in terms of material composition, both appeared to be 
made from polyethylene terephthalate. Spectral correlation 



between the wrench and the tubes was found to be 0.93 
indicating high similarity between the two subjects.  For 
comparison, the spectral correlation between the wrench and 
the dish was much lower 0.86 facilitating their segmentation. 
Another factor is that both materials tubes are semi-
transparent. Therefore, some spectral mixing with the 
anodized aluminum tabletop background is present. The 
anodized aluminum has low reflection in the visible spectral 
range but reflects strongly in SWIR. In addition, the surface 
of the centrifuge tube is highly reflective, leading to some 
misclassification with the coin. Despite these challenges, the 
Extra Trees, Gradient Boosting, Random Forest, SVC, and 
somewhat kNN algorithms were still able to classify most of 
the pixels belonging to the centrifuge tube, achieving an F-
score > 0.75. 

 
5. CONCLUSIONS 

 
In this work, we showcase a software package HSKL for 

the application of general-purpose machine learning 
algorithms to hyperspectral images. We tested the 17 

classification algorithms on an example hyperspectral dataset 
acquired from a bench scanner. Even without parameter 
tuning, the baseline performance of most algorithms achieved 
satisfactory pixel-wise classification of the objects in the test 
image. The package available on GitHub and installable via 
the Python Package Index (PyPi). HSKL supports a suite of 
image classification and regression algorithms, with more 
features are planned, such as support for clustering and robust 
hyperparameter tuning. 
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Figure 5 Ground truth label and model-predicted labels based on pixel spectra. The color encodings are purple-plastic wrench, blue-coin, 
red-centrifuge tube, and green-rubber cap. Extra trees, Gradient Boosting, Random Forest, SVC support vector, and kNN methods 
demonstrate the best visual differentiation between the plastic wrench and the tubes.  



 
Figure 6 Precision, recall and F-score for all methods and objects, using default classifier parameters. Each color encodes a pixel type. 
Arrows show the classification algorithms with the highest scores for all objects.  
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