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ABSTRACT

Convolutional neural networks (CNNs) are a noteworthy tool
for the classification of hyperspectral images (HSIs). CNNs
apply non-linear activation functions to learn data patterns.
One of them is the rectified linear unit (ReLU), which is a
piece-wise linear function with a value which is the input if
positive and zero otherwise. As a result, it is computation-
ally efficient and tends to show good convergence behaviour.
Nonetheless, its performance suffers from the so-called dying
ReLU effect. This is usually managed by introducing more
convolution layers increasing the depth of the model followed
by a ReLU non-linearity layer that may hamper the conver-
gence of network and produce a low classification accuracy
due to data degradation. In order to alleviate these issues
and transmit more information after the activation layer from
the convolutional block, this paper develops a new end-to-
end supervised feature learning framework called MaxMin-
CNN, which works with sub-cubes of the original HSI data
and successively applies 3-D MaxMin convolutional filters to
improve the discrimination ability of the obtained spectral-
spatial features by doubling the feature maps over all the con-
volutional layers. The new model gradually increases the het-
erogeneity of high-level spectral-spatial features across the
MaxMin convolutional layers, enhancing the performance of
HSI classification and reducing the model depth while pre-
serving the classification performance. In order to validate
the model, we report experiments over three widely used HSI
datasets: Indian Pines, University of Pavia and University of
Houston. The results reveal that the proposed MaxMin-CNN
achieves a classification comparable to state-of-the-art classi-
fication models.

Index Terms— Convolutional neural networks (CNNs),
deep learning, hyperspectral images (HSIs), remote sensing,
image classification.
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1. INTRODUCTION

With the ultimate goal of providing , Hyperspectral images
(HSIs) provide rich spectral-spatial information collecting
(for the same observation area) a huge data cube composed
by several images, captured as different measurements along
the electromagnetic spectrum from the visible to the short-
wave infrared. In this context, HSIs provide a characterization
of materials, capturing their chemical and physical proper-
ties within the captured region. Therefore, they ar aplied in
a wide range of applications, including earth observation,
agriculture, vegetation monitoring, urban analysis, and crop
analysis. Among all, land cover classification using HSIs
is one of the most popular research topics, where spectral
pixels are classified into one of several pre-defined land cover
classes. However, the high-dimensionality and the intrinsic
structure of HSI pixels increase the representation complex-
ity of HSIs and, due to the lack of enough labeled training
samples, the classification of HSIs is quite challenging.

In the past two decades, traditional machine learning
methods, such as support vector machines (SVMs) [, 2],
Bayesian models [3]], and k-nearest neighbor (KNN) [4], have
been widely used for HSI classification due to the discrimina-
tion power of handcrafted spectral signatures. However, due
to the complex design of modern remote sensing sensors, the
captured HSI data may contain both noise and spectral redun-
dancy or correlations, along with a lack of sufficient training
samples, thus limiting the HSI classification performance of
traditional pattern recognition and machine learning methods.

Recently, deep learning methods have been success-
fully adopted in the HSI domain and proved effective for
image classification tasks [l [6]. Among various develop-
ments, stacked autoencoders (SAEs) and deep belief net-
works (DBNs) are the most popular unsupervised techniques
to transform spectral-spatial features for HSI classification.
Convolutional neural networks (CNNs) [7]] have shown to be
effictive automatic feature extractors, able to handle the spa-
tial relation among pixels and images. Therefore, they have
become state-of-the-art approaches for HSI classification [§].
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Fig. 1. New 3-D MaxMin CNN for HSI classification.

In order to jointly extract spectral-spatial feature represen-
tations from the input data, 3-D convolutions have received
special attention in HSI classification [9] due to their ability to
process multidimensional input arrays. In this sense, Zhong
et al. proposed a spectral-spatial residual network (SSRN),
improving the obtained performance by introducing 3-D
convolutions (coupled with residual blocks) to reduce the
vanishing gradient problem that arises while extracting joint
spectral-spatial features for classification [10]. The SSRN
model performance can be further improved using a spectral-
spatial attention mechanism [[L1]. Moreover, Paoletti ef al.
introduced the deep pyramid residual network in order to
gradually increase the feature maps of each residual block
to process the spectral-spatial features uncovered by stan-
dard CNNs, involving more locations as the model depth
increases while balancing the workload among all units [[12].
Deep capsule networks have been successfully adapted to
extract spectral-spatial patterns from 3-D raw HSI datasets
for classification [13]. In addition to those deep structures,
that process spectral-spatial features simultaneously, these
features can also be processed separately and then joined
together. For instance, 3-D and 2-D CNNs are sequentially
combined to model more robust spectral-spatial features, and
the resulting HybridSN has attracted significant attention in
the community [14]]. Recently, Dong et al. introduced cooper-
ative spectral-spatial attention dense networks to re-calibrate
the extracted feature maps for HSI classification [15]. The
above mentioned networks provide satisfactory performance.
However, the increasing number of convolutional layers may
hamper the network convergence and produce below stan-
dard results. As a result, the deep network may suffer from
a large number of trainable parameters implying overfitting
problems when few training samples are available.

Existing CNN models successively apply several linear
combination filter blocks followed by non-linear activation
functions, to capture non-linear relations within the data. At
the end, the CNN has a fully connected layer for the final
classification. The rectified linear unit (ReLLU) [[16] is one of
the applied activation function. In the literature [17] it can be

observed that the standard CNN architecture performs well
when the ReLU activation functions mitigate negative infor-
mation pieces obtained from convolutional feature maps. To
allow transmission of some negative information through the
network, the original ReLU function can be slightly modi-
fying into the parametric ReLU (PReLU). The network re-
quires propagating both positive and negative direction infor-
mation. However, due to the strong negative detection abil-
ity of the activation functions, the developed networks may
fail to propagate all necessary information, which can limit
classification performance of the network. The intrinsic com-
plexity of HSI data requires transmission of both positive and
negative responses from the convolutional layers to achieve
correct classification. To overcome these limitations, this pa-
per introduces a new Max-Min convolutional neural network
that prevents the network from learning the opposite filter for
HSI classification. The new network gradually increases the
heterogeneity of high-level spectral-spatial features across the
MinMax convolutional layers, which helps to enhance HSI
classification performance of the network, where positive and
negative learned features reduce the depth of the network sig-
nificantly while preserving classification performance.

The rest of this paper is organized as follows. The new
MinMax—CNN is introduced in Sect.[2] Section [3|reports ex-
perimental results. Finally, conclusions are given in Sect. 4]

2. A NEW CLASSIFICATION FRAMEWORK

MaxMin—CNN aims to propagate more information through
its successive convolutional blocks by successfully enabling
the convolutional filters and their negative counterparts to
detect both positive and negative patterns in the convo-
Iutional feature maps. A graphical overview of the new
MaxMin—-CNN model is shown in Fig. [l As can be ob-
served, the developed network consists of two 3-D MaxMin
convolution blocks that are followed by a local response
normalization module and the ReLU activation function, re-
spectively. A detailed description of this architecture is given
in the following subsections.



2.1. 3-D Max-Min Convolution with Local Response
Norm

In CNNs, the convolutional filter bank plays an important
role as it allows to learn more discriminative features while
preserving the sparsity constraint. Moreover, CNNs are also
known to be automatic extractors of high level feature rep-
resentations from raw images [[17]. To extract joint spectral-
spatial discriminative features, 3-D convolution operations
are adopted as the basic building block of the MaxMin—CNN
model.

The 3-D convolution (C'onv3D) receives in layer (¢ + 1)
raw HSI cubes X jl € RS*5*B a5 input. The layer consist
of z(*1) trainable filters of size k¢ x k¢ x d’ with a stride
of size (s1, $1, $2) in the spatial (height, width) and spectral
depth dimensions. The size of generated layer £ 4 1 in the 3-
D convolutional feature map is S*T1 x S+ x B! where
the spatial height and width are given by S**! = [1 + (S —
k‘*1)/s1] and the channel depth is given by B! = [1 +
(BY — d**1)/s,]. Feature map \ based on layer (£ + 1) in
the 3-D convolution with local response normalization can be
mathematically defined as:

l,l
Xt = ReLU (D Fran (X))« Wt + b5
j=1
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FLen(Xgy) = X5/ (a >

v=max(0,i—n/2)
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where Frpn(.) represents the local response normaliza-
tion (LRN) operation on layer (¢ 4 1) of feature cube X f,
having B feature channels. The hyperparameter « is a nor-
malization parameter, 5 is a contrast constant, € is a small
number to avoid dividing by zero, and n is the size of the
neighborhood and can be determined from the training set,
Wf“ and bﬁ“ are layer (¢ 4+ 1) kernel parameter weights
and bias of the filter bank A, ReLU(z) = max(0, z) and *
denotes the 3-D convolution operation.

The nonlinear ReLU plays a key role in Eq. (I). It provids
an identity mapping for the non-negative values and is zero
otherwise. Therefore, it has a strong negative detection prop-
erty. In order to transmit more information from the convo-
lutional layer, it is important to forward both the positive and
negative patterns through the ReL.U nonlinearity. This is pos-
sible if the network allows both the filter W**! and its nega-
tive counterparts —W**! in convolution layer (¢+ 1) to learn
the discriminative sparsity constraint. Let the negative filter
be represented by — W **+! and qualify all the input on X f as
follows:

X5 =W = (XL W) )

It can be observed in Eq. that, if a pattern is filtered by
—W*! with a strong detection on Xf, then -(Xf * W)

will be sufficiently high and positive, whereas X f W will

be sufficiently low and negative. In this way, it preserves both
positive and negative generated information from the convo-
lutional feature maps using either filter W*+! or — W1, It
is obvious that the number of convolutional feature maps be-
comes double in each convolution block, and enables the con-
volutional layer to use less filters in the network. Eq. (I) can
be rewritten for the negative filter bank —WW*+! as follows:
x(
X = ReLU (Y Fran (X)) « W + 05 ©3)

Jj=1

2.2. New MaxMin Convolutional Neural Network

HSIs are acquired by encoding the same region in different
spectral bands and, due to the presence of both noise and
band correlation, it is desirable to consider the HSI corre-
lation during the processing. As compared to conventional
images, the intrinsic HSI complexity still limits classification
performance for many existing CNN architectures. In order to
extract joint spectral-spatial feature representation and propa-
gate more information through the ReL.U nonlinear function,
we have designed a 3-D Max-Min convolution neural net-
work for HSI classification. MaxMin-CNN takes 3-D raw
HSI cubes, X € RS*5*B a5 input and it can be represented
using FasazMin as:

Ure = FMazMin(X,0) (€]

where 0 is a trainable parameter throughout the MaxMin—CNN
network, ¥, is the number of predicted land cover classes at
the softmax layer, and the layer-wise design of Fsqznrin 18
shown in Fig.[I] The network consists of two 3-D MaxMin
convolutional blocks and the initial block consists of
{MaxMin3D = LRN = ReLU = Dropout}, while the
latter one consists of {MaxMin3D = LRN = ReLU =
Adaptive AvgPool2D}.  After the extraction of MaxMin
convolutional features, we flatten them into a vector and,
then, a softmax function is adopted to calculate the class
probability. The objective of the network is optimized using
the well-known cross-entropy function, defined by:

M L.

> vi log(71:) )

m=1c=1

CE
Loss™ " = i
where y7' and y7' are the actual and predicted class labels,
M and L. are the minibatch samples and the total number
of land-cover classes, respectively. The parameters of the
MaxMin—-CNN network are learned through the Adam opti-
mizer [18]].

3. EXPERIMENTAL RESULTS

In order to evaluate the classification ability of the new net-
work, experiments are performed with three well-known HSI
datasets, i.e., Indian Pines (IP), University of Pavia (UP),
and University of Houston (UH).



Table 1. Architectural Details of a Basic CNN Model

Layer ID Kernel/Neurons LocalResponseNorm  Act. function Dropout
MinMax3D_A | bands x 3 x 3 x 1 x {12,8,24} Yes RELU Yes
MinMax3D_B | bands x 1 x 1 x1x{9,3,17} Yes RELU No

AVG pool Average Pooling

FC Nelasses No Softmax

Table 2. Comparison of a standard CNN with MaxMin—CNN
using the fixed training sets available for IP, UP and UH
scenes in http://dase.grss—ieee.org.

Class \ Indian Pines [ University of Pavia | University of Houston |
| NN MinMaxCNN | CNN__ MinMaxCNN | ONN__ MinMaxCNN |

0 39.09 80.91 89.13 88.55 80.72 80.63

1 69.95 70.54 77.63 8143 98.25 97.22

2 78.40 84.29 62.39 61.43 98.20 97.80

3 33.04 35.95 96.40 94.92 84.34 83.58

4 88.58 88.50 99.44 99.32 99.98 99.89

5 96.80 97.18 89.83 91.28 92.87 95.35

6 0.00 0.00 91.98 93.75 72.45 75.00

7 97.51 98.93 97.91 97.14 78.86 85.29

8 86.67 88.89 97.28 96.19 85.16 87.55

9 61.24 60.04 - - 60.11 56.56

10 78.25 78.83 - - 90.83 91.95

11 72.44 78.98 - - 95.49 98.00

12 91.94 95.55 - - 79.45 77.19

13 89.14 91.14 - - 99.82 100.0

14 66.29 51.68 - - 98.5 98.83
15 85.00 87.00 - - - -

OA 78.06 79.44 84.57 86.17 86.03 86.83

AA 70.89 74.28 89.11 89.34 87.67 88.32

K x 100 75.02 76.59 80.09 81.95 84.83 85.70

Parameters | 22785 85825 8266 29498 42928 161216

100.0
97.5
95.0
92.5
90.0

87.5

Overall Accuracy (%)
Overall Accuracy (%)

85.0
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Fig. 2. OA results obtained by MaxMin—CNN and by a stan-
dard CNN for the IP (a) and UP (b) scenes (average results
after 5 Monte Carlo experiments).

3.1. Classification Results

To measure the classification performance of MaxMin—-CNN,
we use three common quantitative metrics: overall accu-
racy (OA), average accuracy (AA), and kappa coefficient ().
Since MaxMin-CNN utilizes the basic CNN model shown in
Table[T]as its underlying architecture, we compare the classi-
fication performance of MaxMin—CNN with that of the basic
model in Table[Il The used hardware is X Generation Intel®
Core™i9-9940X processor with 128GB of DDR4 RAM and
NVIDIA Titan RTX GPU.

Table @] shows the OA, AA and « coefficient achieved by
the baseline CNN in Table[]and the MaxMin-CNN for the IP,
UP and UH datasets. It can be seen that the MaxMin—CNN
outperforms the standard CNN in terms of the evaluated quan-
titative measures for the three HSI datasets. The achieved im-

provements of MaxMin—CNN in {OA, AA, k} are {+1.38,
+3.39, +1.57}, {4+1.60, +0.23, +1.86} and {40.80, +0.65,
0.87} for the IP, UP and UH datasets respectively compared
to the baseline CNN network.

To illustrate the generalization ability of the MaxMin-CNN
and the baseline CNN network varying the number of convo-
lution kernels (i.e., 8, 16 and 32), we performed experiments
based on randomly selected training samples of 3%, 5%,
10%, 15% and 20% of the IP dataset, whereas the chosen
training set size percentages for the UP dataset are 1%, 3%,
5%, 10%, 15% and 20%. Fig. E]depicts the obtained results.
Due to the discriminative nature of the generated features,
the new network can successfully propagate more informa-
tion through the ReLU nonlinear function and, hence, the
MaxMin—CNN achieves an high classification performance,
even for a limited number of training samples.

Figure. [3illustrates the generated classification maps for
the UH dataset using the fixed available training set for this
dataset. It can be seen that the classification map generated
by MaxMin-CNN contains less noise and artifacts than the
classification map generated by the baseline CNN.

4. CONCLUSION

This paper introduces a simple yet efficient MaxMin—CNN
model able to transmit more information through convo-
lutional blocks. It overcomes the limitations of the ReLU
function and reduces the requirement of additional convolu-
tional layers in the network architecture by slightly increasing
the number of trainable parameters. To extract discriminative
spectral-spatial features from the original HSI, the nw frame-
work uses two 3-D MaxMin convolutional blocks. This helps
propagating both positive and negative information through
the non-linearity layer. The intrinsic complexity of HSIs
is addressed by learning both positive and negative filters.
Therefore, it obtains a good classification generating twice
the number of convolutional feature maps in each convolu-
tional layer. Moreover, the new MaxMin—CNN network helps
to reduce the number of successive convolutional blocks,
since the 3-D MaxMin layer learns both filter banks. In the
future, we are planing to develop residual networks with 3-D
MaxMin convolution layers to achieve state-of-the-art classi-
fication performance while keeping a very small number of
residual blocks.
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