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ABSTRACT 

 
Remote sensing data are commonly utilized for agricultural 
applications pertaining to the assessment and monitoring of 
crop health. However, capabilities to detect and monitor 
livestock and associated operations, such as dairies and 
ranches, are comparatively limited. We acquired and 
characterized spectral reflectance signatures for materials 
expected to be common in unobscured areas of livestock 
agricultural facilities, i.e., livestock and waste material. 
Representative samples were measured in field surveys and 
the laboratory using an ASD FieldSpec 4 spectroradiometer 
spanning the 0.4-2.5µm reflective spectrum. We then applied 
the new signatures with conventional target detection 
algorithms to data collected by NASA/JPL’s AVIRIS-NG 
imaging spectrometer to determine the feasibility of 
producing compositional distribution maps. Resulting match 
planes successfully delineated groups of livestock and waste 
materials, generally bounded by fenced pen areas, and 
inspection of high scoring pixel spectra suggested good 
agreement with ground truth measurements. This research is 
an initial demonstration of high spectral and spatial 
resolution AVIRIS-NG data to identify materials such as 
hair, which exhibit both broadband VIS-NIR pigmentation 
and narrow, structural protein-attributed SWIR vibrational 
absorption features. Further study may contribute toward 
enhancing land use/land cover map products and 
complementing investigations of biogenic methane sources. 
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1. INTRODUCTION 
 
Our study focused on the analysis of visible, near-infrared 
and shortwave-infrared (VNIR/SWIR) imaging 
spectroscopy (hyperspectral) data to determine the feasibility 
of remote detection and mapping of materials associated with 
livestock agricultural facilities. Remote sensing applications 
for agricultural monitoring have been used since the 1970’s 
and data collected today by civil and commercial 
multispectral sensors are heavily utilized for precision 
farming, disease detection, economic modeling and 
commodity market surveillance [1]. In contrast, spectral 
remote sensing applications for mapping and monitoring of 
livestock-based agriculture are comparatively limited [2]. 
The field of hyperspectral remote sensing has seen a rapid 

increase in number of platforms collecting data and 
subsequent development of applications related to the 
mapping of surficial composition and characterization of 
natural processes [3]. By integrating previous research from 
different scientific disciplines, we sought to demonstrate 
detection and mapping for a livestock agriculture application 
that could be replicated, albeit in a more sophisticated 
manner, at scale over large geographic areas. 
 

2. BACKGROUND 
 
Livestock agriculture in the United States (US) has largely 
shifted toward large-scale industrialized production 
operations; these are typically specialized to house a single 
species, and are larger than farms in the past [4]. A facility’s 
protective housing system is designed based on factors such 
as climate, soil type and animal density; open yard, 
combined open/roofed and fully roofed systems are 
commonly employed [5]. 
 
2.1. Livestock Characteristics 
 
Livestock are defined as domesticated animals, such as 
cattle, sheep and horses, raised to produce various 
commodities. In the US, several cattle breeds are used for 
dairy and meat production. These animals are generally 
large; for instance, the most common cattle breed for dairy 
production, Holstein-Friesian, at full maturity can weigh 
over 600kg, stand over 1.5m tall, measure greater than 2.4m 
in nose-to-tail length, and 1.2m in imprint width [6, 7]. The 
hair exhibited by cattle are largely dependent on breed and 
vary in color, tone, proportion, pattern and density. 
 
2.2. Surfaces Impacted by Livestock 
 
The ground used by livestock, either at rest or in transit to 
access food and water sources or protective shelter can be 
greatly impacted over time. These surfaces vary in 
composition, and contain varying proportions of natural soil, 
water, animal waste and feed in multiple layers [7, 8]. 
 
2.3. Previous Research 
 
Studies pertaining to the practical utilization of hyperspectral 
data for livestock agriculture-related applications are limited. 
However, elements of research from various scientific 



disciplines and remote sensing specialties offer insight to 
develop new capabilities. Studies involving 
spectroradiometric measurements of wildlife and domestic 
livestock species have been previously published [9, 10, 11]. 
Spectroscopy is commonly used by industry scientists to 
analyze hair and effects of applied consumer cosmetic 
products [12]. Research has also been published on the 
spectral characteristics of waste materials and surfaces 
impacted by domestic livestock [13]. Multispectral satellite 
data has been investigated to discern large mammals; low 
population density in the wild, combined with spatial and 
spectral resolution constraints were reported challenges [14]. 
Analyses of simulated aerial hyperspectral data have 
suggested the ability to conduct species differentiation by 
exploiting reflectance differences in the SWIR wavelength 
range [10]. More recently, AVIRIS-NG and HyTES data 
have been used to study gaseous emissions from agricultural 
facilities [15, 16]. 
 

3. DATA 
 
3.1 ASD Spectroradiometer Measurements 
 
A field-portable Analytical Spectral Devices (ASD) 
spectroradiometer was used to measure samples in 2151 
bands ranging from 0.35-2.50µm, with 1.1-1.4nm sampling 
[17]. A Contact Probe fore-optic was used to provide an 
active light source (2901K +/- 10%) for consistent 
illumination and high signal-to-noise ratio. Measurements 
were compiled, corrected for detector offsets and converted 
to ENVI-compatible spectral libraries to conduct further 
analysis. 
 
3.2 AVIRIS-NG Data 
 
AVIRIS-NG dataset ang20160912t, acquired and hosted by 
NASA/JPL, was used to perform compositional mapping for 
the study. AVIRIS-NG is a pushbroom VNIR/SWIR 
imaging spectrometer that measures reflected energy at 
nadir, in 425 bands ranging from 0.37-2.50µm, with 5nm 
sampling over 640 spatial pixels [18]. The data were 
acquired at an altitude of 3.01km at 09:11 GMT on October 
1st, 2016, approximately 7km SE of Chino, California (CA) 
at 33.97N -117.60W. The collection footprint measured 
approximately 2.05km in width by 25km in length, and was 
oriented from SW to NE. The ground sample distance (GSD) 
of this dataset was 2.6m, allowing visual identification of 
objects related to facility infrastructure while still retaining a 
scale adequate to observe variation in major classes of 
surficial composition. 
 
3.3 Satellite Imagery 

 
NAIP, Google Earth and Bing high-resolution satellite and 
aerial imagery services were used for context and 
corroboration during review of products derived from 

spectral analysis of AVIRIS-NG data [19, 20, 21]. Imagery 
collection dates ranged from 2012 to 2021. 
 

4. METHODOLOGY 
 
4.1 Sample Measurement and Analysis 
 
ASD measurements were made at Farm Colony in 
Stanardsville, Virginia (VA) for both cattle hides and waste 
surfaces. These were augmented by commercially-procured 
hide specimens to sample additional breeds and hair colors. 
Measurements were made in VA due to access limitations 
and elapse of 4+ years’ time from collection of AVIRIS-NG 
data in CA. Analyses of these data were conducted to 
establish representative electronic- and vibrational-attributed 
reflectance and absorption features. Center wavelengths for 
absorption minima were noted and, if possible, associated 
with chemical bonds. 
 

 
Figure 1. Measurement of animal hide with ASD 
spectroradiometer with Contact Probe fore-optic. 
 

 
Figure 2. Example of measured surface used by livestock. 
 
4.2 Atmospheric Correction 

 
Radiance (L1) data collected by AVIRIS-NG were processed 
using the FLAASH atmospheric correction utility to yield 
apparent at-surface reflectance data (L2) suitable for 
comparison with ground-based measurements [22]. The 
output L2 data were validated by referencing the spectra of 



common in-scene materials such as healthy and senescent 
vegetation and rock-forming minerals. 
 
4.3 Target Detection and Distribution Mapping 

 
Classic target detection algorithms were utilized to perform 
matching of AVIRIS-NG pixel spectra to input library 
spectra [23]. Output match plane images were produced for 
each signature, and represent a per-pixel match score. The 
Spectral Angle Mapper (SAM) and Adaptive Cosine 
Estimator (ACE) algorithms were applied to AVIRIS-NG 
data to test output for both sparse and widely distributed 
targets within the study area.  
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Equation 1. Spectral Angle Mapper. S: target spectrum, X: 
pixel spectrum, T: spectrum magnitude.  
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Equation 2. Adaptive Cosine Estimator. S: target spectrum, 
X: pixel spectrum, T: spectrum magnitude, and Σ-1: inverse 
covariance. 

 
5. RESULTS 

 
5.1. Hide and Surface Sample Measurements 
 
The ASD measurements of hide samples were plotted for 
comparison and analyzed to identify spectral characteristics. 
In the VNIR spectrum from 0.35-1.2µm, reflectance varied 
significantly with change in sample color.  The SWIR 
spectrum between 1.0-2.5µm exhibited numerous narrow 
absorptions that were consistent despite color differences. 
The surface sample measurements varied in the visible 
spectrum, while wide and moderately deep absorptions 
between 2.02-2.22 and 2.22-2.39µm were observed. 
 
5.2. Detection and Mapping 
 
ACE detection planes for hide samples and SAM detection 
planes for waste material were each manually stretched to a 
threshold permitting optimal interpretation of target 
distribution. Highest scoring pixel spectra were compared to 
library signatures, which indicated general agreement, 
particularly with previously identified vibrational 
absorptions in the SWIR. 

 

                   
Figure 3. Representative field and laboratory measurements of hide (Left) and waste samples (Right). 
 

            
Figure 4. Sub-study area providing example detection results. (Left): true-color image. (Center): stretched ACE plane for 
dark-toned hide signature; circled area references Fig 6. (Right): stretched SAM rule image of waste material signature. 



 

    
    

 
Figure 5. Library signature versus high-scoring AVIRIS-NG 
detection pixel spectra for hide (Top) and waste (Bottom).  
 
5.3 Discussion 
 
Analysis of the ASD hide signatures indicated significant 
variability within the VNIR spectrum range from 0.35-1.2 
µm we attributed to the (unquantified) influence of pigments 
such as eumelanin and pheomelanin [12]. Narrow 
absorptions observed in the SWIR spectrum from 1.2-2.5µm 
are likely related to the structural protein, keratin, that 
comprises hair, and in turn covered the hide samples [12]. 
Broad SWIR absorption features associated with the ASD 
waste surface signatures were consistently observed.  
 
Examination of the ACE and SAM detection planes 
highlighted spatial patterns of livestock and waste materials 
distributed within numerous penned areas. The comparison 
of ACE detection results in Fig 4 (center) with high-
resolution aerial imagery in Fig 6 shows the congregation of 
livestock around water or food source, despite the 
hyperspectral and imagery data being collected years apart. 
Patterns like these were observed throughout the study area, 
and reflect known behavioral characteristics of cattle [7]. 
 

  
Figure 6. Google Earth imagery corresponding to ACE 
detection in Fig 4. Groups of livestock can be visually 
identified within penned area. (Google, 2021). 
 
Our measurements, acquired at a farm in VA, were 
successfully applied to detect livestock and waste material 
with AVIRIS-NG data collected over Southern CA, 
potentially underscoring the compositional consistency and 
spectral similarity of mapped materials. While the high 
spatial and spectral resolution of the data likely enabled 
discrimination of these materials within the study area, we 
did not attempt to determine optimal resolution parameters. 
The observed variability of VNIR reflectance for cattle hide 
suggests a broad area detection/mapping application may 
need to consider use of numerous signatures to yield 
comprehensive mapping of various hair colors. These and 
other factors must be studied further to ensure future remote 
monitoring efforts are accurate, efficient and effective. 
 

6. CONCLUSION 
 
Novel application of field-based measurements for analysis 
of AVIRIS-NG image data were used to remotely detect and 
map the distribution of unobscured materials commonly 
associated with livestock agricultural operations. The image 
data spectra for high-scoring match planes were validated in 
direct comparison to field measurements of samples. The 
distribution of both livestock and waste materials mapped 
with ACE and SAM, respectively, were found to agree with 
context provided by review of high-resolution satellite and 
aerial imagery. Further investigation will be necessary to 
determine the extent to which these signatures vary, identify 
metrics to assess accuracy, and establish limitations of the 
application when implemented over large geographic areas. 
The analysis of AVIRIS-NG data was found to be a valuable 
tool in which to conduct surficial compositional mapping for 
these materials. With additional study and maturation, the 
application may contribute to more detailed landcover 
classes and complement investigation of biogenic sources of 
methane. 
 



7. ACKNOWLEDGEMENTS 
 
This research was internally funded by Solis Applied 
Science, LLC. We would like to Dan Puchalski for critical 
initial discussions about the application; Stephanie R. 
(Jenkins) Aslett for data collection; Farm Colony, 
Stanardsville, Virginia for permitting measurement of their 
livestock and farm facilities; and Sarah Lundeen at 
NASA/JPL for facilitating data requests. 
 

8. REFERENCES 
 
[1] Steven, M. D., and Jeremy Austin Clark, eds. Applications of 
remote sensing in agriculture. Elsevier, 2013. 
 
[2] Hollings, Tracey, et al. "How do you find the green sheep? A 
critical review of the use of remotely sensed imagery to detect and 
count animals." Methods in Ecology and Evolution 9.4 (2018): 881-
892. 
 
[3] Goetz, Alexander FH. "Three decades of hyperspectral remote 
sensing of the Earth: A personal view." Remote Sensing of 
Environment 113 (2009): S5-S16. 
 
[4] MacDonald, James M., and William D. McBride. The 
transformation of US livestock agriculture: Scale, efficiency, and 
risks. No. 1476-2016-121035. 2009. 
 
[5] De Vries, M., et al. "Housing and management factors 
associated with indicators of dairy cattle welfare." Preventive 
veterinary medicine 118.1 (2015): 80-92. 
 
[6] Holstein-Friesian Fact Sheet. 
www.holsteinusa.com/pdf/fact_cattle_sheet.pdf. (2021).  
 
[7] Dairyland Initiative, University of Wisconsin-Madison.  
https://thedairylandinitiative.vetmed.wisc.edu. (2021). 
 
[8] Cole, N. A., et al. "Chemical composition of pen surface layers 
of beef cattle feedyards." The Professional Animal Scientist 25.5 
(2009): 541-552. 
 
[9] Wyatt, C. L., et al. "Deer census using a multispectral linear 
array instrument." International Symposium on Remote Sensing of 
Environment, 18th, Paris, France. 1985. 
 
[10] Bortolot, Zachary J., and Philip E. Prater. "A first assessment 
of the use of high spatial resolution hyperspectral imagery in 
discriminating among animal species, and between animals and 
their surroundings." Biosystems engineering 102.4 (2009): 379-
384. 
 
[11] Leblanc, George, et al. "Spectral reflectance of polar bear and 
other large arctic mammal pelts; potential applications to remote 
sensing surveys." Remote Sensing 8.4 (2016): 273. 
 
[12] Pande, Chandra M., and Brian Yang. "Near-infrared 
spectroscopy: Applications in hair research." Journal of cosmetic 
science 51.3 (2000): 183-192. 
 

[13] Ben-Dor, Eyal, Y. Inbar, and Y. Chen. "The reflectance spectra 
of organic matter in the visible near-infrared and shortwave infrared 
region (400–2500 nm) during a controlled decomposition process." 
Remote Sensing of Environment 61.1 (1997): 1-15. 
 
[14] LaRue, Michelle A., et al. "Testing methods for using high‐
resolution satellite imagery to monitor polar bear abundance and 
distribution." Wildlife Society Bulletin 39.4 (2015): 772-779. 
 
[15] Duren, Riley M., et al. "California’s methane super-
emitters." Nature 575.7781 (2019): 180-184. 
 
[16] Hulley, Glynn C., et al. "High spatial resolution imaging of 
methane and other trace gases with the airborne Hyperspectral 
Thermal Emission Spectrometer (HyTES)." Atmospheric 
Measurement Techniques 9.5 (2016): 2393-2408. 
 
[17] Danner, Martin, et al. "Spectral Sampling with the ASD 
FIELDSPEC 4." (2015): 1-20. 
 
[18] Chapman, John W., et al. "Spectral and radiometric calibration 
of the next generation airborne visible infrared spectrometer 
(AVIRIS-NG)." Remote Sensing 11.18 (2019): 2129.  
 
[19] USDA FSA-APFO Aerial Photography Field Office. National 
Agriculture Imagery Program (NAIP) USDA Imagery. (2015). 
 
[20] Map showing location of livestock agricultural facility. Google 
Earth, earth.google.com/web/. 
 
[21] Map showing location of livestock agricultural facility. Bing 
Maps, bing.com/maps/aerial. 
 
[22] Adler-Golden, S., et al. "FLAASH, a MODTRAN4 
atmospheric correction package for hyperspectral data retrievals 
and simulations." Proc. 7th Ann. JPL Airborne Earth Science 
Workshop. Vol. 97. Pasadena, CA: JPL Publication, 1998. 
 
[23] Manolakis, Dimitris, and Gary Shaw. "Detection algorithms 
for hyperspectral imaging applications." IEEE signal processing 
magazine 19.1 (2002): 29-43. 
 

http://www.holsteinusa.com/pdf/fact_cattle_sheet.pdf

	Characterization of Domestic Livestock and Associated Agricultural Facilities using NASA/JPL AVIRIS-NG Imaging Spectroscopy Data
	Abstract
	8. REFERENCES

