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ABSTRACT 

 
Hyperspectral (HS) imaging is a novel technique that allows 
for better understanding of materials, being an improvement 
in multiple applications. However, one of its main drawbacks 
is the focus assessment. This issue has already been covered 
for RGB images. Thus, in this study, it is going to be revised 
several no reference RGB image quality assessment 
algorithms (NR-IQA). To this aim, a HS image database was 
created by capturing different images of the same specimen 
at different working distances. NR-IQA algorithms were 
tested over monochromatic images extracted from the HS 
images. Additionally, a study through each independent 
wavelength was carried out. Results showed that some 
algorithms perform better for calibration samples and another 
ones for biological samples. Furthermore, focus differences 
were found in the initial and final wavelengths. In conclusion, 
HS image results are similar to the one obtained for RGB 
images but, there is still room for improvement.   

 
Index Terms— Hyperspectral Imaging, hyperspectral 

microscopy, NR-IQA, focus quantification 

1. INTRODUCTION 

Nowadays, hyperspectral imaging (HSI) is an emerging 
technology, being its main strength, the large number of 
adjacent spectral bands which are possible to acquire and 
handle. This allows the detection of materials in a scene with 
higher precision than conventional RGB imaging. Thus, this 
type of images and the type of information they provide have 
multiple applications in fields such as medicine [1] or 
agriculture [2]. 

However, images may suffer from a variety of distortions, 
especially focus became really important when working with 
hyperspectral (HS) microscopic images [3]. Most common 
problems are related with the depth of field (DOF). DOF is 
the distance between the nearest and the farthest objects that 
are in acceptably sharp focus in an image (Figure 1.a).  

Equation (1) shows the relationship between the different 
parameters involved in the DOF for a given circle of 
confusion (𝑐𝑐), focal length (𝑓𝑓), f-number (𝑁𝑁), and working 
distance (𝑊𝑊𝑊𝑊) . Unfocused images may take place when 
changes are made on the 𝑊𝑊𝑊𝑊 or the 𝑓𝑓.  

 
𝑊𝑊𝐷𝐷𝐷𝐷 =

2𝑊𝑊𝑊𝑊2𝑁𝑁𝑐𝑐
𝑓𝑓2

 (1) 

On one hand, changes in the 𝑊𝑊𝑊𝑊 may occur because of 
non-flat microscopic samples. This results in different areas 
focused at different 𝑊𝑊𝑊𝑊𝑊𝑊. Figure 1.b shows a ray transfer 
matrix analysis of these kind of distortion and Figure 1.c 
displays a real example when trying to image a non-flat grape 
leaf sample using our HS microscope at 20× of magnification. 
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Figure 1. (a) Depth of field illustration. (b) Working distance shift problem. 
(c) Example of an unfocused grape leaf due to different WDs in the scene 

captured at 20×. (d) Chromatic focal shift problem.  

On the other hand, changes in 𝑓𝑓 may occur when different 
wavelengths are involved. A common optical problem occurs 
when a lens is unable to bring all wavelengths to the same 
focal plane. This phenomenon is called chromatic aberration 
(CA) (Figure 1.d).  

Sharp images are crucial in most HSI applications, such as 
cancer diagnosis in histological samples [4]. Therefore, 
image quality assessment (IQA) becomes a key technique. 



Objective IQA can be categorized into full-reference IQA 
(FR-IQA, e.g., Peak signal to noise ratio (PSNR)[5]), 
reduced-reference IQA (RR-IQA, e.g., Free-energy-based 
distortion metric (FEDM)[6]), and no-reference IQA (NR-
IQA, e.g., Local phase coherence (LPC)[7]). Due to the 
unavailability of ground truth images in blur image 
applications, NR-IQA is preferable but also more challenging. 

There are numerous NR-IQA algorithms for RGB images 
in the literature, such as  dubbed blind/referenceless image 
spatial quality evaluator (BRISQUE) [8] or blind image blur 
evaluator (BIBLE) [9]. However, there is a limited state-of-
the-art for these algorithms applied to HS images. The 
objective of this study is to analyze NR-IQA algorithms 
developed for RGB images in HS microscopic images. 

2. METHODOLOGY 

In this section, we report the methodology followed in the 
dataset acquisition and further describe the different NR-IQA 
algorithms employed to evaluate our samples.  

2.1. Database Acquisition 

The instrumentation employed in this study consists of an HS 
camera coupled to a conventional light microscope (Figure 2). 
The microscope is an Olympus BX-53 (Olympus, Tokyo, 
Japan). The HS camera is a Hyperspec® VNIR A-Series from 
HeadWall Photonics (Fitchburg, MA, USA), which is based 
on an imaging spectrometer coupled to a CCD (Charge-
Coupled Device) sensor, the Adimec-1000m (Adimec, 
Eindhoven, Netherlands). This HS system works in the visual 
and near-infrared (VNIR) spectral range from 400 to 1000 nm 
with a spectral resolution of 2.8 nm, sampling 826 spectral 
channels and 1004 spatial pixels. The push-broom camera 
performs spatial scanning to acquire an HS cube with a 
mechanical stage (SCAN, Märzhäuser, Germany) attached to 
the microscope, which provides accurate movement (±3 μm 
accuracy) of the specimens in the 3 axes directions: 𝑥𝑥, 𝑦𝑦, 𝑧𝑧. 
The objective lenses are from the LMPLFLN family 
(Olympus, Tokyo, Japan), which are optimized for infra-red 
(IR) observations. The light source is a 12 V, 100 W halogen 
lamp. This system was previously employed to histological 
HS analysis of brain cancer samples [4]. 

The database is divided into calibration and biological 
microscopic samples. In order to acquire a dataset for focus 
analysis, different images were acquired varying the 𝑊𝑊𝑊𝑊, i.e. 
modifying the distance between the specimen and the 
objective lens. For each specimen 10 images where recorded, 
being the first one captured in the subjective point of focus. 
From there, 9 additional images were captured distancing 0.1 
mm each time from the previous record. For each HS image 
captured, white and dark reference images were also taken. 
Later, calibration of the HS cubes was performed following 
conventional HS calibration, presented in [3]. 

A subjective score (𝑆𝑆𝑆𝑆) from 0 to 9 was given to each 
image according with the order in which it was captured. 
Images were taken with an increment distance (Δ𝑧𝑧) of 0.1 
mm respect to the previous one. Therefore, 𝑊𝑊𝑊𝑊  of each 
image can be calculated following the equation (2), knowing 
that 𝑊𝑊𝑊𝑊0   is the point where the HS image is focused by 
visual inspection. In Figure 4 it can be seen an example of 
three specimens with the 10 different 𝑊𝑊𝑊𝑊𝑊𝑊. 

 𝑊𝑊𝑊𝑊 = 𝑊𝑊𝑊𝑊0 + (𝑆𝑆𝑆𝑆 × Δ𝑧𝑧) (2) 
 

 
Figure 2. Microscopic HS acquisition system. a) HS camera, b) Halogen 

light source, c) Positioning joystick and d) XY linear stage [4]. 

2.2. NR-IQA Algorithms 

Following the classification made by [10] over NR-IQA 
methods applied to RGB images, they can be divided into 
learning free and learning based methods. Here, we are 
focused studying learning free methods, which can be further 
divided as shown in Figure 3. From each of the four learning 
free NR-IQA algorithm categories, the best algorithm with 
available code for monochromatic images was chosen. 

 
Figure 3. Classification of NR-IQA learning free methods. 

2.2.1. Edge Based 
Perceptual Sharpness Index (PSI) [7] is based on the 
statistical analysis of local edge gradients. The first step of 
the algorithm is to select the most significant edges in the 
image through an adaptive edge selection procedure. Second, 
the edge widths of the selected edges are computed by an 
edge width measurement based on diagonal edge gradients. 
Third, edge widths above the just noticeable blur (JNB) width 
are subtracted by the edge slopes. Finally, the local sharpness 
map is deduced by applying the above three steps in a block-
wise way. Since the sharpest regions in an image are most 
related to human sharpness perception, the global image 
quality score is determined by the highest qth percentile 
average of the local sharpness values. 



 

Figure 4. Examples of the RGB representation of the HS images in our database. Column 1 shows the calibration sample, a ruler. Columns 
2 and 3 show biological samples, a cotton stem, and a lung histology sample, respectively. Rows show the continuous blurring of the sample 
as we get further away from the focus point, incrementing 𝛥𝛥𝑊𝑊𝑊𝑊 and so, the SC (𝛥𝛥𝑊𝑊𝑊𝑊 = 𝑆𝑆𝑆𝑆 × 𝛥𝛥𝑧𝑧).  

2.2.2. Edge Free 
Bahrami and Kot [9] defined the maximum local variation 
(MLV) of each pixel as the maximum intensity variation of 
the pixel with respect to its 8-neighbors. Since the human 
vision system is more sensitive to higher variations regions, 
high variations in the pixel intensities are a better indicator of 
sharpness. Taking that into account, the pixels’ MLVs are 
subjected to a weighting scheme where heavier weights are 
assigned to greater MLVs to make the tail end of MLV 
distribution thicker. Thus, the MLV distribution becomes 
more discriminative for different blur degrees. Finally, the 
metric to measure sharpness is taken from the standard 
deviation of the weighted MLV distribution.  

2.2.3. Wavelet 
Local Phase Coherence (LPC) structures are shown in step 
edges, but not in blur images. Following this idea, Hassen et 
al. [11] proposed a blur-specific NR-IQA method based on 
the strength of this metric near edges and lines, the LPC based 
sharpness index (LPC-SI). To its calculation, an image must 
pass through 3-sacle 8-orientation log-Gabor filters. Then, 
LPC strength is computed at one orientation and one spatial 
location and later, at each spatial location. However, unlike 
other algorithms, LPC-SI does not employ block-based 
computation. They proposed an efficient algorithm that 
largely simplifies the LPC computation, making it easily 
applicable in practical applications.  



2.2.4. Fourier like 
Vu and Chandler [12] proposed a spectral and spatial 
sharpness measure (S3). According to the reduction of high-
frequency components in blur images, the spectral measure 
𝑆𝑆1(𝑥𝑥) of a block 𝑥𝑥 is initially calculated, then rectified by a 
sigmoid function to account for human visual system (HVS). 
To further consider the contrast effect, the spatial measure 
𝑆𝑆2(𝑥𝑥)  of a block 𝑥𝑥  is calculated based on the local total 
variation. Then, the overall sharpness map 𝑆𝑆3 of the image 𝐼𝐼 
is obtained by a geometric mean of spectral and spatial 
measures in a block-wise way. Finally, to consider the human 
sharpness perception, the overall sharpness score is 
calculated as the average of the largest 1% values of the 
overall sharpness map. 

2.3. Evaluation Criteria 

From each of the aforementioned algorithms, an objective 
score was obtained when applying them to our HS 
microscopic image database. However, for the evaluation of 
the obtained results, Video Quality Experts Group (VQEG) 
[13] suggest to map each objective score (𝑜𝑜) to a subjective 
score ( 𝑊𝑊 ) using equation (4), where 𝜏𝜏1 = max(𝑊𝑊) , 𝜏𝜏2 =
min(𝑊𝑊) , 𝜏𝜏3 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑜𝑜), and 𝜏𝜏4 = 𝑊𝑊𝑠𝑠𝑠𝑠(𝑜𝑜)/4. 

 𝐷𝐷(𝑜𝑜) =
𝜏𝜏1 − 𝜏𝜏2

1 + 𝑚𝑚
𝑜𝑜−𝜏𝜏3
𝜏𝜏4

+ 𝜏𝜏2 (3) 

Afterwards, three evaluation metrics are calculated to 
evaluate the method’s performance: spearman’s rank-order 
correlation coefficient (SRCC) which employs a monotonic 
function; pearson’s linear correlation coefficient (PLCC) 
which is a measure of the linear correlation after a nonlinear 
mapping and; root-mean-square error (RMSE) which is used 
to measure the differences after the nonlinear mapping. To 
obtain a good NR-IQA algorithm, the values of SRCC and 
PLCC are close to 1, while the value of RMSE is close to 0. 

These algorithms were evaluated firstly in a set of 
monochromatic images (computed from the mean of all the 
wavelengths of the calibrated HS image) at different 𝑊𝑊𝑊𝑊𝑊𝑊, 
since there is dependency between 𝑊𝑊𝑊𝑊 and focus. Then, they 
were applied in each band of each image independently to 
show the dependency between the wavelength and the focus 
(to prove the existence of any CA). 

The different algorithms were implemented in 
MATLAB® R2019b in a Windows environment (Microsoft 
Windows 10) with an Intel i5-4210U 1.70 GHz CPU and 16 
GB RAM. 

3. RESULTS 

In this section, the results obtained using the previously 
described methods in our HS database are shown. The 
performance comparison between different WD images of 
the calibration and the biological samples, are shown in Table 
2 and Table 3 respectively. Best values are in boldface. 
Although best methods shown a good correlation (SRCC > 

0.8 and PLCC > 0.8), there are still some which did not 
(SRCC < 0.5 and PLCC < 0.5).  As PSI is based on the local 
edge gradients, it shows good results for the biological 
samples, where edges are heterogeneous (there is edges 
everywhere). However, LPC performs better in calibration 
samples, where there is a homogeneous distribution of edges, 
due to its computation at several orientations and spatial 
locations. Furthermore, since later application of these 
methods is framed in real-life, computational time is also a 
good estimator of the algorithm’s quality. Although overall 
methods have a small execution time, S3 does not, and it was 
not considered later on. 

 Table 1. Calibration sample results 

Method SRCC↑ PLCC↑ RMSE↓ Time (s) 
PSI 0.491 0.564 5.931 0.050 

MLV 0.806 0.843 2.324 0.113 
LPC 0.903 0.871 2.172 1.900 
S3 0.576 0.797 2.492 26.790 

Table 2. Biological sample results 

Method SRCC↑ PLCC↑ RMSE↓ Time (s) 
PSI 0.812 0.810 2.266 0.052 

MLV 0.423 0.510 3.619 0.115 
LPC 0.441 0.433 3.491 1.903 
S3 0.629 0.611 5.792 29.528 

 
NR-IQA methods, but S3 because of its large execution time, 
were also applied to each wavelength separately. Results are 
shown in Figure 5. As we can see, correlation indexes are 
constant for the central wavelengths (~450 to 900 nm) but 
results seem to be worsened for the initial and final ranges 
(400-450 nm and 900-1000 nm) in the three methods. This 
may be produced due to CA and/or because of the low 
performance of the HS sensor in these spectral ranges as 
studied in [14] where the same HS camera was employed.  

4. CONCLUSION 

In this work, it has been developed a methodology to capture 
a focus assessment dataset and followed to acquire 110 HS 
images with its calibration data. Afterwards, taking 
advantage of this dataset, it was demonstrated that blur-
specific NR-IQA methods developed for RGB images can 
also quantify focus of HS images. NR-IQA algorithms have 
been used over HS monochromatic images showing results 
similar to the ones obtained with regular RGB images. 
However, some differences were found between calibration 
and biological samples. This can be due to the limited size of 
the database we are working with. Moreover, these 
algorithms were also employed in each wavelength 
separately and it was shown that focus difference is shown in 
the initial and final wavelengths. A reason to that could be 
CA and/or the low performance of the HS sensor at these 
wavelengths, further investigation is necessary. As [10] also 



concluded, there is still a large space for designing robust and 
effective blur-specific NR-IQA methods for realistic blur 
images. Future works will include the development of an 
optimized algorithm for HS images blur detection, targeting 
z-stacking applications to guarantee the acquisition of high-
quality microscopic HS images from non-flat specimens.  

 
(a) 

 
(b) 

 
(c) 

Figure 5. Graph of correlation value vs wavelength for the calibration sample. 
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